Chapter 5

Mean-Variance Analysis

5.1. Suppose there are two risky assets with means p; = 1.08, puo = 1.16, standard deviations
o1 = 0.25, 02 = 0.35, and correlation p = 0.30. Calculate the GMV portfolio and locate it on

Figure 5.1.

Solution: The GMV portfolio is

Substituting

0.0625 0.02625
Y= ,

0.02625 0.1225

we obtain

0.7264
0.2736

Therefore, the mean and standard deviation of the GMV portfolio are fignm, = p/'m = 1.1019 and
Ogmv = V'Em = 0.2293. This plots as the point that is furthest to the left on the hyperbola in

Figure 5.1.
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5.2. Assume there is a risk-free asset. Consider an investor with quadratic utility —(w — £)?/2,

and no labor income.

(a)

Explain why the result of Exercise 2.5 implies that the investor will choose a portfolio on the
mean-variance frontier.
Solution: From Exercise 2.5, the optimal portfolio is

H2

= W(C —woRp)S (= Ryu).

¢
This is proportional to ¥7!(u — Ryt) and hence is on the mean-variance frontier.

Under what circumstances will the investor choose a mean-variance efficient portfolio? Ex-
plain the economics of the condition you derive.

Solution:  The frontier portfolios are scalar multiples of the vector X' (u — Ryt). See
(5.15). The positive scalar multiples are efficient (because they have pigarg > Ry), and the
negative scalar multiples are inefficient. Therefore, when ¢ > wo Ry, the optimal portfolio for
the quadratic utility investor is on the efficient part of the frontier, and when ( < woRy, the
optimal portfolio is on the inefficient part of the frontier. ( is the bliss level of wealth for the
quadratic utility function. When ¢ < wofRy, the investor can exceed the bliss level by simply
holding the risk-free asset. Thus, higher returns can lower utility, so the investor holds an

inefficient portfolio of risky assets.

Re-derive the answer to Part (b) using the orthogonal projection characterization of the
quadratic utility investor’s optimal portfolio presented in Section 77.
Solution:  Given that there is no labor income, g, in (3.42) is zero. Also, given that there

is a risk-free asset, ¢, = ¢ and E[m,(,| = (E[m,] = (/Ry. Therefore, (3.42) implies

i=C(—(¢/Ry —wy)R,.
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The return Rp is on the inefficient part of the frontier, so the return producing Z is on the

efficient part of the frontier if and onl if (/Rf — wo > 0.

5.3. Suppose that the risk-free return is equal to the expected return of the GMV portfolio (Ry =

B/C). Show that there is no tangency portfolio.

Hint: Show there is no 6 and A satisfying
SY M — Rypt) = Mmu + (1 — M) Tgmy -
Recall that we are assuming p is not a scalar multiple of ¢.

Solution: The mean-variance frontier considering only the risky assets is the set Aw, + (1 —\)7,
for some A, and the mean-variance frontier including the risk-free asset is the set 6%~ (u — Ryu)

for some §. For the frontiers to intersect, we must have
6X(u— Ryt) = Ay + (1 = N, .

This is equivalent to

and premultiplying by ¥ gives

A 1-=A

Because p is not proportional to ¢, this equation can hold only if

A 1—A
§—————=96 ——=0.
Uy By 3N 0
This implies
A 1—A
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and substituting Ry = B/C = /S~ u//S 71 yields

1

—
UYL ’

which is impossible.

5.4. Show that E[R?] > E[RZ] for every return R (thus, R, is the minimum second-moment return).
The returns having a given second moment a are the returns satisfying E[R?] = a, which is equivalent
to

var(R) + E[R]®> = a;
thus, they plot on the circle 22 4+ y? = a in (standard deviation, mean) space. Use the fact that I:Bp
is the minimum second-moment return to illustrate graphically that Rp must be on the inefficient
part of the frontier, with and without a risk-free asset (assuming E[R,] > 0 in the absence of a

risk-free asset).

Solution: Using Facts 1, 2 and 8§,
E[R?] = E[(R, + bé, + £)°] = E[R2] + V*E[é2] + E[€%] > E[R].

With a risk-free asset, the cone intersects the vertical axis at Ry > 0, and the point on the cone
closest to the origin is on the lower part. In the absence of a risk-free asset, the assumption
E[IN‘ZP] > 0 implies that global minimum variance portfolio has a positive expected return (use the

definition of by, and Facts 16 and 17 — which imply 1 — E[é,] > 0 — to deduce this). Thus, the

point on the hyperbola closest to the origin must be on the lower part of the hyperbola.

5.5. Write any return R as R, + (R — Rp) and use the fact that 1 — ¢, is orthogonal to excess
returns—because €, represents the expectation operator on the space of excess returns—to show

that
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is an SDF. When there is a risk-free asset, T, being spanned by a constant and an excess return, is

in the span of the returns and hence must equal m,. Use this fact to demonstrate (?7).

Solution: We have

using E[R — R,] = E[é,(R — R,] for the second equality and Fact 8 for the third. Thus, # is an

SDF. This implies

L= LBl
f E[R)]

Moreover, T = m,, implies

- %

e
and

- 1 _ . 1 — E[é,)] 1
El#%) = —=— (1 - 26[e)] + E[&)) = - =M =
E[Rp]2 . g E[Rp]2 RfE[ )

using Fact 16 for the second equality. Thus,

Rp - RfE[Rp] (E[lé](l - ép)) =Ry(1—-¢p).

5.6. Establish the properties claimed for the risk-free return proxies:

(a) Show that var(R) > var(R, + bwé,) for every return R.
Solution: By Fact 15, the minimum variance return is Rp + bé,, for some b. Using Fact 8,
we have

var(R,, + bé,) = var(R,) — 2bE[R,]E[é,] + var(é,)
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and by Fact 17, this equals
var(R,) + (b2(1 —E[&,)) - zbE[fzp]) E[6,) .

By Fact 16, E[¢,] > 0, so the minimum variance return is found by minimizing (b%(1—E[&,]) —

2bE[R,] in b, with solution b = by,.

(b) Show that cov(R,, R, + b,é,) = 0.

Solution:  Using Fact 8, we have cov(R,, R, + b,é,) = var(R,) — b,E[R,]E[¢,] = 0.

(c) Prove (??), showing that R, -+ b.é, represents the constant b, times the expectation operator
on the space of returns.

Solution: Using Fact 11 and the definition of b, we have

beE[R] = b.E[R), + bé, + &] = E[R2] + bbcE[é,] .

From Facts 2, 8, 11, and 16,

E[R(Rp + bcép)] = E[(Rp + bép + 5)(Rp + bcép)]
= E[R2] + bb E[e2]

= E[R2] + bbcE[&,) -

Thus,

beE[R] = E[R(R, + beé,)] -

5.7. If all returns are joint normally distributed, then Rp, €p and € are joint normally distributed
in the orthogonal decomposition R = Rp + bé, + € of any return R (because Rp is a return and ¢,
and € are excess returns). Assuming all returns are joint normally distributed, use the orthogonal

decomposition to compute the optimal return for a CARA investor.
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Solution: When returns are normally distributed, a CARA investor chooses the return R that

maximizes

E[R] — %awo var(R) .

Given R = Rp + bé, + € and Facts 11 and 15, the objective function is
~ B 1 ~ B B

E[R + be,] — 500 [var(R, + bé,) + var(é)],

so it is optimal to choose £€ = 0. The investor chooses b to maximize
- 1 ~ 9 -

bE[e,] — §aw0[26 cov(Rp, €p) + b” var(ép)],
and the optimum satisfies

E[ép] — awg cov(R,, &p) — awg var(éy)b =0,
implying

Elép] _ COV(RIIH ép)

b pu—
aw var(€ép) var(é,)

Using Facts 8 and 17, we can simplify this further to

1 + awoE[R,)]

b= awo(1 — E[&,))

5.8. Assume there is a risk-free asset.

a) Using the formula (3.45) for m,, compute A such that
P

Ry = Ml eR+ (1= ARy

Solution: We have
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Hence

var(mp) = —5

where k% = (Rpe — p)’S 7 (Rye — ) is the squared maximum Sharpe ratio. Because E[r,] =

1/Ry, this implies

. 1+ K2
f

Therefore, by the definition R, = 7,/ E[mz], we have

5 Rf Rf Iv—1/1
R, = + Ret — Y (R —
D 1+ k2 1+ g2 ( ft M) ( N)v

in the notation of Section 5.2. Setting

By (B = BC)

A=
1+ K2

b
we have

1+/€2+RfB—R?cC_ 1+A—RfB

1-A=
1+ K2 14 k2

i

because k2 = A — 2R¢B + R?C. Thus,

R, = MR+ (1= ARy

Show that X in part (a) is negative when Ry < B/C and positive when Ry > B/C. Note: This
shows that Rp is on the inefficient part of the frontier, because the portfolio generating Rp is
short the tangency portfolio when the tangency portfolio is efficient and long the tangency
portfolio when it is inefficient.

Solution:

Ry(B — RsC)

A=
1+ k2

<0

when B > RyC' and positive when B < R;C.
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5.9. Consider the problem of choosing a portfolio 7 of risky assets, a proportion ¢, > 0 to borrow
and a proportion ¢y > 0 to lend to maximize the expected return 7’u + ¢, Ry — ¢p R subject to the
constraints (1/2)7'Ymr < k and /7 + ¢y — ¢p = 1. Assume B/C > Ry > Ry, where B and C are

defined in (?7). Define

1
YN — Rpe)
o
UEHpu— Ry)

Ty = Z_l(M_Rbb)a

>N — Ret).

Ty =

Using the Kuhn-Tucker conditions, show that the solution is either (i) 7 = (1—¢y)m, for 0 < ¢y < 1,

(i) m=Amp+ (1 = N)mp for 0 < A <1, or (iil) m = (1 + ¢p)mp for ¢p > 0.
Solution: The Kuhn-Tucker conditions are

w—o0xmT—vy =0,
Rﬁ —v+n= Oa
_Rb Ty = 0 )
b, Pb, 10, Mp, 6 2 0,

1
57‘(’27‘( <k,
Jmt e —dp =1,

1 /
Mede =1y =0 | gmim—k | =0.
There are three possibilities to consider: (i) ¢¢ > 0, (ii), ¢ > 0, (iii) ¢y = ¢p = 0.

(i) If ¢¢ > 0, then ny = 0, v = Ry, and
|
= 52 (1w — Ry).

Also, v = Ry implies n, = Rp— Ry > 0. Hence, ¢ = 0, and /7 = 1—¢;. This implies 7 = (1—¢y)my.
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(ii) If ¢ > 0, then n, =0, v = — Ry, and
|
T = 52 (i — Rpe).

Also, v = — Ry, implies 7y = Ry— Ry > 0, so ¢y = 0. This implies /7 = 1+¢;,. Hence, 7 = (1+¢p ).
(iii) If ¢p = ¢p = 0, then
= %E_I(M — ),
where v = Ry +ny; > Ry and v = Ry — 1y < Rp. Thus, v = ARy + (1 — AR}, for some 0 < A < 1.

From /7 = 1, it follows that 7 = Amy + (1 — ).



