
Chapter 5

Mean-Variance Analysis

5.1. Suppose there are two risky assets with means µ1 = 1.08, µ2 = 1.16, standard deviations

σ1 = 0.25, σ2 = 0.35, and correlation ρ = 0.30. Calculate the GMV portfolio and locate it on

Figure 5.1.

Solution: The GMV portfolio is

π =
1

ι′Σ−1ι
Σ−1ι.

Substituting

Σ =

 0.0625 0.02625

0.02625 0.1225

 ,

we obtain

π =

0.7264

0.2736

 .

Therefore, the mean and standard deviation of the GMV portfolio are µgmv = µ′π = 1.1019 and

σgmv =
√
π′Σπ = 0.2293. This plots as the point that is furthest to the left on the hyperbola in

Figure 5.1.
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5.2. Assume there is a risk-free asset. Consider an investor with quadratic utility −(w̃ − ξ)2/2,

and no labor income.

(a) Explain why the result of Exercise 2.5 implies that the investor will choose a portfolio on the

mean-variance frontier.

Solution: From Exercise 2.5, the optimal portfolio is

φ =
κ2

1 + κ2
(ζ − w0Rf )Σ−1(µ−Rf ι) .

This is proportional to Σ−1(µ−Rf ι) and hence is on the mean-variance frontier.

(b) Under what circumstances will the investor choose a mean-variance efficient portfolio? Ex-

plain the economics of the condition you derive.

Solution: The frontier portfolios are scalar multiples of the vector Σ−1(µ − Rf ι). See

(5.15). The positive scalar multiples are efficient (because they have µtarg > Rf ), and the

negative scalar multiples are inefficient. Therefore, when ζ > w0Rf , the optimal portfolio for

the quadratic utility investor is on the efficient part of the frontier, and when ζ < w0Rf , the

optimal portfolio is on the inefficient part of the frontier. ζ is the bliss level of wealth for the

quadratic utility function. When ζ < w0Rf , the investor can exceed the bliss level by simply

holding the risk-free asset. Thus, higher returns can lower utility, so the investor holds an

inefficient portfolio of risky assets.

(c) Re-derive the answer to Part (b) using the orthogonal projection characterization of the

quadratic utility investor’s optimal portfolio presented in Section ??.

Solution: Given that there is no labor income, ỹp in (3.42) is zero. Also, given that there

is a risk-free asset, ζp = ζ and E[m̃pζp] = ζE[m̃p] = ζ/Rf . Therefore, (3.42) implies

x̃ = ζ − (ζ/Rf − w0)R̃p .
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The return R̃p is on the inefficient part of the frontier, so the return producing x̃ is on the

efficient part of the frontier if and onl if ζ/Rf − w0 > 0.

5.3. Suppose that the risk-free return is equal to the expected return of the GMV portfolio (Rf =

B/C). Show that there is no tangency portfolio.

Hint: Show there is no δ and λ satisfying

δΣ−1(µ−Rf ι) = λπmu + (1− λ)πgmv .

Recall that we are assuming µ is not a scalar multiple of ι.

Solution: The mean-variance frontier considering only the risky assets is the set λπµ + (1−λ)πι

for some λ, and the mean-variance frontier including the risk-free asset is the set δΣ−1(µ − Rf ι)

for some δ. For the frontiers to intersect, we must have

δΣ−1(µ−Rf ι) = λπµ + (1− λ)πι .

This is equivalent to (
δ − λ

ι′Σ−1µ

)
Σ−1µ =

(
δRf +

1− λ
ι′Σ−1ι

)
Σ−1ι ,

and premultiplying by Σ gives

(
δ − λ

ι′Σ−1µ

)
µ =

(
δRf +

1− λ
ι′Σ−1ι

)
ι .

Because µ is not proportional to ι, this equation can hold only if

δ − λ

ι′Σ−1µ
= δRf +

1− λ
ι′Σ−1ι

= 0 .

This implies

λ

ι′Σ−1µ
Rf +

1− λ
ι′Σ−1ι

= 0 ,
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and substituting Rf = B/C = ι′Σ−1µ/ι′Σ−1ι yields

1

ι′Σ−1ι
= 0 ,

which is impossible.

5.4. Show that E[R̃2] ≥ E[R̃2
p] for every return R̃ (thus, R̃p is the minimum second-moment return).

The returns having a given second moment a are the returns satisfying E[R̃2] = a, which is equivalent

to

var(R̃) + E[R̃]2 = a ;

thus, they plot on the circle x2 + y2 = a in (standard deviation, mean) space. Use the fact that R̃p

is the minimum second-moment return to illustrate graphically that R̃p must be on the inefficient

part of the frontier, with and without a risk-free asset (assuming E[R̃p] > 0 in the absence of a

risk-free asset).

Solution: Using Facts 1, 2 and 8,

E[R̃2] = E[(R̃p + bẽp + ε̃)2] = E[R̃2
p] + b2E[ẽ2

p] + E[ε̃2] ≥ E[R̃2
p] .

With a risk-free asset, the cone intersects the vertical axis at Rf > 0, and the point on the cone

closest to the origin is on the lower part. In the absence of a risk-free asset, the assumption

E[R̃p] > 0 implies that global minimum variance portfolio has a positive expected return (use the

definition of bm and Facts 16 and 17 — which imply 1 − E[ẽp] > 0 — to deduce this). Thus, the

point on the hyperbola closest to the origin must be on the lower part of the hyperbola.

5.5. Write any return R̃ as R̃p + (R̃ − R̃p) and use the fact that 1 − ẽp is orthogonal to excess

returns—because ẽp represents the expectation operator on the space of excess returns—to show

that

x̃
def
=

1

E[R̃p]
(1− ẽp)
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is an SDF. When there is a risk-free asset, x̃, being spanned by a constant and an excess return, is

in the span of the returns and hence must equal m̃p. Use this fact to demonstrate (??).

Solution: We have

E[x̃R̃] =
1

E[R̃p]
E[(1− ẽp)R̃p] +

1

E[R̃p]
E[(1− ẽp)(R̃− R̃p)]

=
1

E[R̃p]
E[(1− ẽp)R̃p]

= 1 ,

using E[R̃ − R̃p] = E[ẽp(R̃ − R̃p] for the second equality and Fact 8 for the third. Thus, x̃ is an

SDF. This implies

1

Rf
= E[x̃] =

1− E[ẽp]

E[R̃p]
.

Moreover, x̃ = m̃p implies

R̃p =
x̃

E[x̃2]
,

and

E[x̃2] =
1

E[R̃p]2
(1− 2E[ẽp] + E[ẽ2

p]) =
1− E[ẽp]

E[R̃p]2
=

1

RfE[R̃p]
,

using Fact 16 for the second equality. Thus,

R̃p = RfE[R̃p]

(
1

E[R̃p]
(1− ẽp)

)
= Rf (1− ẽp) .

5.6. Establish the properties claimed for the risk-free return proxies:

(a) Show that var(R̃) ≥ var(R̃p + bmẽp) for every return R̃.

Solution: By Fact 15, the minimum variance return is R̃p + bẽp for some b. Using Fact 8,

we have

var(R̃p + bẽp) = var(R̃p)− 2bE[R̃p]E[ẽp] + var(ẽp) ,
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and by Fact 17, this equals

var(R̃p) +
(
b2(1− E[ẽp])− 2bE[R̃p]

)
E[ẽp] .

By Fact 16, E[ẽp] > 0, so the minimum variance return is found by minimizing (b2(1−E[ẽp])−

2bE[R̃p] in b, with solution b = bm.

(b) Show that cov(R̃p, R̃p + bzẽp) = 0.

Solution: Using Fact 8, we have cov(R̃p, R̃p + bzẽp) = var(R̃p)− bzE[R̃p]E[ẽp] = 0.

(c) Prove (??), showing that R̃p + bcẽp represents the constant bc times the expectation operator

on the space of returns.

Solution: Using Fact 11 and the definition of bc, we have

bcE[R̃] = bcE[R̃p + bẽp + ε̃] = E[R̃2
p] + bbcE[ẽp] .

From Facts 2, 8, 11, and 16,

E[R̃(R̃p + bcẽp)] = E[(R̃p + bẽp + ε̃)(R̃p + bcẽp)]

= E[R̃2
p] + bbcE[ẽ2

p]

= E[R̃2
p] + bbcE[ẽp] .

Thus,

bcE[R̃] = E[R̃(R̃p + bcẽp)] .

5.7. If all returns are joint normally distributed, then R̃p, ẽp and ε̃ are joint normally distributed

in the orthogonal decomposition R̃ = R̃p + bẽp + ε̃ of any return R̃ (because R̃p is a return and ẽp

and ε̃ are excess returns). Assuming all returns are joint normally distributed, use the orthogonal

decomposition to compute the optimal return for a CARA investor.
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Solution: When returns are normally distributed, a CARA investor chooses the return R̃ that

maximizes

E[R̃]− 1

2
αw0 var(R̃) .

Given R̃ = R̃p + bẽp + ε̃ and Facts 11 and 15, the objective function is

E[R̃+ bẽp]−
1

2
αw0[var(R̃p + bẽp) + var(ε̃)] ,

so it is optimal to choose ε̃ = 0. The investor chooses b to maximize

bE[ẽp]−
1

2
αw0[2b cov(R̃p, ẽp) + b2 var(ẽp)] ,

and the optimum satisfies

E[ẽp]− αw0 cov(R̃p, ẽp)− αw0 var(ẽp)b = 0 ,

implying

b =
E[ẽp]

αw0 var(ẽp)
− cov(R̃p, ẽp)

var(ẽp)
.

Using Facts 8 and 17, we can simplify this further to

b =
1 + αw0E[R̃p]

αw0(1− E[ẽp])
.

5.8. Assume there is a risk-free asset.

(a) Using the formula (3.45) for m̃p, compute λ such that

R̃p = λπ′tangR̃ + (1− λ)Rf .

Solution: We have

m̃p =
1

Rf
+

(
ι− 1

Rf
µ

)′
Σ−1(R̃− µ) .
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Hence

var(m̃p) =
κ2

R2
f

,

where κ2 = (Rf ι− µ)′Σ−1(Rf ι− µ) is the squared maximum Sharpe ratio. Because E[m̃p] =

1/Rf , this implies

E[m̃2
p] =

1 + κ2

R2
f

.

Therefore, by the definition R̃p = m̃p/E[m̃2
p], we have

R̃p =
Rf

1 + κ2
+

Rf
1 + κ2

(Rf ι− µ)′Σ−1(R̃− µ) ,

in the notation of Section 5.2. Setting

λ = −
Rf (B −RfC)

1 + κ2
,

we have

1− λ =
1 + κ2 +RfB −R2

fC

1 + κ2
=

1 +A−RfB
1 + κ2

,

because κ2 = A− 2RfB +R2
fC. Thus,

R̃p = λπ′tangR̃ + (1− λ)Rf .

(b) Show that λ in part (a) is negative when Rf < B/C and positive when Rf > B/C. Note: This

shows that R̃p is on the inefficient part of the frontier, because the portfolio generating R̃p is

short the tangency portfolio when the tangency portfolio is efficient and long the tangency

portfolio when it is inefficient.

Solution:

λ = −
Rf (B −RfC)

1 + κ2
< 0

when B > RfC and positive when B < RfC.
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5.9. Consider the problem of choosing a portfolio π of risky assets, a proportion φb ≥ 0 to borrow

and a proportion φ` ≥ 0 to lend to maximize the expected return π′µ+φ`R`−φbRb subject to the

constraints (1/2)π′Σπ ≤ k and ι′π + φ` − φb = 1. Assume B/C > Rb > R`, where B and C are

defined in (??). Define

πb =
1

ι′Σ−1(µ−Rbι)
Σ−1(µ−Rbι) ,

π` =
1

ι′Σ−1(µ−R`ι)
Σ−1(µ−R`ι) .

Using the Kuhn-Tucker conditions, show that the solution is either (i) π = (1−φ`)π` for 0 ≤ φ` ≤ 1,

(ii) π = λπ` + (1− λ)πb for 0 ≤ λ ≤ 1, or (iii) π = (1 + φb)πb for φb ≥ 0.

Solution: The Kuhn-Tucker conditions are

µ− δΣπ − γι = 0 ,

R` − γ + η` = 0 ,

−Rb + γ + ηb = 0 ,

φ`, φb, η`, ηb, δ ≥ 0 ,

1

2
π′Σπ ≤ k ,

ι′π + φ` − φb = 1 ,

η`φ` = ηbφb = δ

(
1

2
π′Σπ − k

)
= 0 .

There are three possibilities to consider: (i) φ` > 0, (ii), φb > 0, (iii) φ` = φb = 0.

(i) If φ` > 0, then η` = 0, γ = R`, and

π =
1

δ
Σ−1(µ−R`ι) .

Also, γ = R` implies ηb = Rb−R` > 0. Hence, φb = 0, and ι′π = 1−φ`. This implies π = (1−φ`)π`.
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(ii) If φb > 0, then ηb = 0, γ = −Rb, and

π =
1

δ
Σ−1(µ−Rbι) .

Also, γ = −Rb implies η` = Rb−R` > 0, so φ` = 0. This implies ι′π = 1+φb. Hence, π = (1+φb)πb.

(iii) If φ` = φb = 0, then

π =
1

δ
Σ−1(µ− γι) ,

where γ = R` + η` ≥ R` and γ = Rb − ηb ≤ Rb. Thus, γ = λR` + (1 − λ)Rb for some 0 ≤ λ ≤ 1.

From ι′π = 1, it follows that π = λπ` + (1− λ)πb.


