

Chapter 3

Stochastic Discount Factors

3.1. Assume there are two possible states of the world: ω_1 and ω_2 . There are two assets, a risk-free asset returning R_f in each state, and a risky asset with initial price equal to 1 and date-1 payoff \tilde{x} . Let $R_d = \tilde{x}(\omega_1)$ and $R_u = \tilde{x}(\omega_2)$. Assume without loss of generality that $R_u > R_d$.

(a) What inequalities between R_f , R_d and R_u are equivalent to the absence of arbitrage opportunities?

Solution: The payoff of a zero-cost portfolio is $\phi(\tilde{R} - R_f)$ for some ϕ . For this to be nonnegative in both states and positive in one state, we must have either (i) $\phi > 0$ and $R_u > R_d \geq R_f$ or (ii) $\phi < 0$ and $R_f \geq R_u > R_d$. Thus, a necessary and sufficient condition for the absence of arbitrage opportunities is that $R_u > R_f > R_d$.

(b) Assuming there are no arbitrage opportunities, compute the unique vector of state prices, and compute the unique risk-neutral probabilities of states ω_1 and ω_2 .

Solution: Let q_d denote the state price of state ω_1 and q_u the state price of state ω_2 . The

state prices satisfy

$$q_d R_f + q_u R_f = 1,$$

$$q_d R_d + q_u R_u = 1.$$

The unique solution to this system of equations is

$$q_d = \frac{R_u - R_f}{R_f(R_u - R_d)}, \quad \text{and} \quad q_u = \frac{R_f - R_d}{R_f(R_u - R_d)}.$$

The risk neutral probabilities are $q_d R_f$ and $q_u R_f$.

(c) Suppose another asset is introduced into the market that pays $\max(\tilde{x} - K, 0)$ for some constant K . Compute the price at which this asset should trade, assuming there are no arbitrage opportunities.

Solution: The asset should trade at $q_u \max(x_u - K, 0) + q_d \max(x_d - K, 0)$, where x_d denotes the value of \tilde{x} in state 1 and x_u the value of \tilde{x} in state 2.

3.2. Assume there are three possible states of the world: ω_1 , ω_2 , and ω_3 . Assume there are two assets: a risk-free asset returning R_f in each state, and a risky asset with return R_1 in state ω_1 , R_2 in state ω_2 , and R_3 in state ω_3 . Assume the probabilities are 1/4 for state ω_1 , 1/2 for state ω_2 , and 1/4 for state ω_3 . Assume $R_f = 1.0$, and $R_1 = 1.1$, $R_2 = 1.0$, and $R_3 = 0.9$.

(a) Prove that there are no arbitrage opportunities.

Solution: Let \tilde{R} denote the risky asset return. A zero-cost portfolio has payoff $\phi(\tilde{R} - R_f)$ for some ϕ . This equals 0.1ϕ in state 1, 0 in state 2, and -0.1ϕ in state 3. Obviously, there is no ϕ such that $\phi(\tilde{R} - R_f)$ is nonnegative in all states and positive in some state.

(b) Describe the one-dimensional family of state-price vectors (q_1, q_2, q_3) .

Solution: State prices must satisfy

$$q_1 + q_2 + q_3 = 1$$

$$1.1q_1 + q_2 + 0.9q_3 = 1.$$

Subtracting the top from the bottom shows that $q_3 = q_1$ and substituting this into the first shows that $q_2 = 1 - 2q_1$. q_1 is arbitrary.

(c) Describe the one-dimensional family of SDFs

$$\tilde{m} = (m_1, m_2, m_3),$$

where m_i denotes the value of the SDF in state ω_i . Verify that $m_1 = 4$, $m_2 = -2$, $m_3 = 4$ is an SDF.

Solution: Stochastic discount factors are given by

$$m_1 = q_1/(1/4) = 4q_1, \quad m_2 = q_2/(1/2) = 2 - 4q_1, \quad m_3 = q_3/(1/4) = 4q_1,$$

with q_1 being arbitrary. Taking $q_1 = 1$ yields $m_1 = 4$, $m_2 = -2$, $m_3 = 4$.

(d) Consider the formula

$$\tilde{y}_p = \mathbb{E}[\tilde{y}] + \text{Cov}(\tilde{X}, \tilde{y})' \Sigma_x^{-1} (\tilde{X} - \mathbb{E}[\tilde{X}])$$

for the projection of a random variable \tilde{y} onto the linear span of a constant and a random vector \tilde{X} . When the vector \tilde{x} has only one component \tilde{x} (is a scalar), the formula simplifies to

$$\tilde{y}_p = \mathbb{E}[\tilde{y}] + \beta(\tilde{x} - \mathbb{E}[\tilde{x}]),$$

where

$$\beta = \frac{\text{cov}(\tilde{x}, \tilde{y})}{\text{var}(\tilde{x})}.$$

Apply this formula with \tilde{y} being the SDF $m_1 = 4, m_2 = -2, m_3 = 4$ and \tilde{x} being the risky asset return $R_1 = 1.1, R_2 = 1.0, R_3 = 0.9$ to compute the projection of the SDF onto the span of the risk-free and risky assets.

Solution: We have $E[\tilde{R}] = 1$ and $E[\tilde{m}] = 1$ and

$$\text{cov}(\tilde{R}, \tilde{y}) = \frac{1}{4}(0.1)(3) + \frac{1}{2}(0)(-3) + \frac{1}{4}(-0.1)(3) = 0.$$

Thus, the projection is

$$\tilde{m}_p = E[\tilde{m}] = 1.$$

(e) The projection in part (d) is by definition the payoff of some portfolio. What is the portfolio?

Solution: \tilde{m}_p is the payoff of holding the risk-free asset.

3.3. Assume there is a risk-free asset. Let $\tilde{\mathbf{R}}$ denote the vector of risky asset returns, let μ denote the mean of $\tilde{\mathbf{R}}$, and let Σ denote the covariance matrix of $\tilde{\mathbf{R}}$. Let ι denote a vector of 1's. Derive the following formula for the SDF \tilde{m}_p from the projection formula (3.32):

$$\tilde{m}_p = \frac{1}{R_f} + \left(\iota - \frac{1}{R_f} \mu \right)' \Sigma^{-1} (\tilde{\mathbf{R}} - \mu).$$

Solution: From the projection formula we have:

$$\tilde{m}_p = E[\tilde{m}_p] + \text{cov}(\tilde{m}_p, \tilde{\mathbf{R}}) \Sigma^{-1} (\tilde{\mathbf{R}} - \mu)$$

When a risk-free asset exists, the mean of an SDF is $1/R_f$. Furthermore,

$$\text{cov}(\tilde{m}_p, \tilde{\mathbf{R}}) = E[\tilde{m}_p (\tilde{\mathbf{R}} - \mu)'] = E[\tilde{m}_p \tilde{\mathbf{R}}]' - E[\tilde{m}_p] \mu' = \left(\iota - \frac{1}{R_f} \mu \right)'$$

Thus,

$$\tilde{m}_p = \frac{1}{R_f} + \left(\iota - \frac{1}{R_f} \mu \right)' \Sigma^{-1} (\tilde{\mathbf{R}} - \mu).$$

3.4. Suppose two random vectors \tilde{X} and \tilde{Y} are joint normally distributed. Explain why the orthogonal projection (3.32) equals $\mathbb{E}[\tilde{Y}|\tilde{X}]$.

Solution: Let \tilde{Y}_p denote the projection (3.32), so we have $\tilde{Y} = \tilde{Y}_p + \tilde{\varepsilon}$ with \tilde{Y}_p being an affine function of \tilde{X} and $\tilde{\varepsilon}$ being orthogonal to \tilde{X} . Then,

$$\mathbb{E}[\tilde{Y} | \tilde{X}] = \mathbb{E}[\tilde{Y}_p | \tilde{X}] + \mathbb{E}[\tilde{\varepsilon} | \tilde{X}] = \tilde{Y}_p + \mathbb{E}[\tilde{\varepsilon} | \tilde{X}].$$

Now, because $\tilde{\varepsilon} = \tilde{Y} - \tilde{Y}_p$, which is a linear combination of the joint normal random vectors \tilde{X} and \tilde{Y} , it follows that $\tilde{\varepsilon}$ and \tilde{X} are joint normal. Hence, because they are uncorrelated, they are actually independent and consequently mean-independent. This implies that $\mathbb{E}[\tilde{\varepsilon} | \tilde{X}] = 0$, so

$$\mathbb{E}[\tilde{Y} | \tilde{X}] = \tilde{Y}_p.$$

3.5. Show that, if there is a strictly positive SDF, then there are no arbitrage opportunities.

Solution: Assume \tilde{m} is a strictly positive SDF. If \tilde{x} is a nonnegative marketed payoff, then its price is $\mathbb{E}[\tilde{m}\tilde{x}] \geq 0$, and $\mathbb{E}[\tilde{m}\tilde{x}] = 0$ if and only if $\tilde{x} = 0$ with probability one. Therefore, there are no arbitrage opportunities.

3.6. Show by example that the law of one price can hold but there can still be arbitrage opportunities.

Solution: Suppose there are two possible states of the world, and the market consists of the two Arrow securities having prices p_i . Then the market is complete, and each payoff $\tilde{x} = (x_1, x_2)$ has a unique cost $p_1x_1 + p_2x_2$. If $p_1 < 0$, then buying the first asset is an arbitrage opportunity.

3.7. Suppose there is an SDF \tilde{m} with the property that for every function g there exists a portfolio θ (depending on g) such that

$$\sum_{i=1}^n \theta_i \tilde{x}_i = g(\tilde{m}).$$

Consider an investor with no labor income \tilde{y} . Show that his optimal wealth is a function of \tilde{m} .

Hint: For any feasible \tilde{w} , define $\tilde{w}^* = E[\tilde{w} | \tilde{m}]$, and show that \tilde{w}^* is both budget feasible and at least as preferred as \tilde{w} , using the result of Section 1.5. Note: The assumption in this exercise is a weak form of market completeness. The exercise is inspired by Chamberlain (1988).

Solution: Set $\tilde{w}^* = E[\tilde{w} | \tilde{m}]$ and $\tilde{\varepsilon} = \tilde{w} - \tilde{w}^*$, so we have that \tilde{w} is $\tilde{w} = \tilde{w}^* + \tilde{\varepsilon}$. We will show that $\tilde{\varepsilon}$ has a zero mean and is mean-independent of \tilde{w}^* . Hence, the result of Section 1.5 shows that \tilde{w}^* is at least as preferred as \tilde{w} . Finally, we will show that \tilde{w}^* is budget feasible. This implies that \tilde{w}^* is optimal. Since $\tilde{w}^* = E[\tilde{w} | \tilde{m}]$, which is a function of \tilde{m} , this will complete the proof.

We have

$$E[\tilde{\varepsilon} | \tilde{m}] = E[\tilde{w} | \tilde{m}] - E[\tilde{w}^* | \tilde{m}] = \tilde{w}^* - \tilde{w}^* = 0.$$

Also, because \tilde{w}^* is a function of \tilde{m} ,

$$E[\tilde{\varepsilon} | \tilde{w}^*] = E[E[\tilde{\varepsilon} | \tilde{m}] | \tilde{w}^*] = 0.$$

Therefore, $\tilde{\varepsilon}$ has a zero mean and is mean-independent of \tilde{w}^* . Because \tilde{w}^* is a function of \tilde{m} , there exists by assumption a portfolio $\tilde{\theta}$ with payoff equal to \tilde{w}^* . The cost of the portfolio is

$$E[\tilde{m}\tilde{w}] = E[E[\tilde{m}\tilde{w} | \tilde{m}]] = E[\tilde{m}E[\tilde{w} | \tilde{m}]] = E[\tilde{m}\tilde{w}^*],$$

by iterated expectations. Hence, the cost of \tilde{w}^* is the same as the cost of \tilde{w} , so \tilde{w}^* is budget feasible.

3.8. Suppose there is a risk-free asset. Adopt the notation of Exercise 3.7, and assume the risky asset returns have a joint normal distribution. Show that the optimal portfolio of risky assets for an investor with no labor income is $\pi = \delta\Sigma^{-1}(\mu - R_f\iota)$ for some real number δ , by applying the reasoning of Exercise 3.7 with $\tilde{m} = \tilde{m}_p$, using the formula (3.45) for \tilde{m}_p and using the results of Exercise 3.4.

Solution: For any budget feasible \tilde{w} , let $\tilde{w}^* = \mathbb{E}[\tilde{w} | \tilde{m}_p]$. Then, as shown in Exercise 3.7, \tilde{w} equals \tilde{w}^* plus mean-independent noise, so \tilde{w}^* is preferred to \tilde{w} . Furthermore, \tilde{w}^* is budget feasible. From (3.45),

$$\tilde{m}_p - \mathbb{E}[\tilde{m}_p] = -\frac{1}{R_f}(\mu - R_f \iota)' \Sigma^{-1}(\tilde{R}^{\text{vec}} - \mu).$$

Hence,

$$\tilde{w}^* = \mathbb{E}[\tilde{w}] - \frac{1}{R_f} \left(\frac{\text{cov}(\tilde{w}, \tilde{m}_p)}{\text{var}(\tilde{m}_p)} \right) (\mu - R_f \iota)' \Sigma^{-1}(\tilde{R}^{\text{vec}} - \mu).$$

This shows that the portfolio of risky assets producing \tilde{w}^* is $\delta \Sigma^{-1}(\mu - R_f \iota)$ for

$$\delta = -\frac{1}{R_f} \left(\frac{\text{cov}(\tilde{w}, \tilde{m}_p)}{\text{var}(\tilde{m}_p)} \right) = -\frac{1}{R_f} \left(\frac{\text{cov}(\tilde{w}^*, \tilde{m}_p)}{\text{var}(\tilde{m}_p)} \right),$$

the second equality following from iterated expectations.

3.9. Assume there is a finite number of assets, and the payoff of each asset has a finite variance. Assume the Law of One Price holds. Apply facts stated in Section 3.8 to show that there is a unique SDF \tilde{m}_p in the span of the asset payoffs. Show that the orthogonal projection of any other SDF onto the span of the asset payoffs equals \tilde{m}_p .

Solution: The span of the assets is a finite-dimensional subspace of \mathcal{L}^2 . The law of one price states that there is a unique price $C[\tilde{x}]$ for each \tilde{x} in the span of the payoffs. The function $C[\cdot]$ is linear. Therefore, it has a Riesz representation $C[\tilde{x}] = \mathbb{E}[\tilde{x} \tilde{m}_p]$ for a unique \tilde{m}_p in the span of the assets. Given any stochastic discount factor \tilde{m} , we have $\tilde{m} = \tilde{m}^* + \tilde{\varepsilon}$, where the orthogonal projection \tilde{m}^* is in the span of the assets and $\tilde{\varepsilon}$ is orthogonal to the span of the assets. Hence, $C[\tilde{x}] = \mathbb{E}[\tilde{m} \tilde{x}] = \mathbb{E}[\tilde{x} \tilde{m}^*]$ for all \tilde{x} in the span of the assets. Thus, \tilde{m}^* is also in the span of the assets and represents the price function. By the uniqueness of the Riesz representation, it must be that $\tilde{m}^* = \tilde{m}_p$.

