Chapter 1

Utility and Risk Aversion

1.1. Calculate the risk tolerance of each of the LRT utility functions (negative exponential, log,

power, shifted log, and shifted power) to verify the formulas for risk tolerance given in Section 1.3
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1.2. Consider a person with constant relative risk aversion p who has wealth w.

(a) Suppose he faces a gamble in which he wins or loses some amount x with equal probabilities.

Derive a formula for the amount 7 that he would pay to avoid the gamble; that is, find 7
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satisfying
1
u(w—m) = gu(w —z)+ iu(w + )
when w is log or power utility.

Solution: When u is log utility, we have

log(w — ) = %log(w —x)+ %log(w +2) =log\/(w — z)(w+ ).

Exponentiating both sides and rearranging gives

T=w—+/(w—2z)(w+z).

For power utility, we have

This implies

Suppose instead that he is offered a gamble in which he loses x or wins y with equal prob-
abilities. Find the maximum possible loss x at which he would accept the gamble; that is,
find z satisfying

u(w) = %u(w —x)+ %u(w +y)

when u is log or power utility.

Solution: When u is log utility, we have

1 1
logw = ilog(w —x)+ ilog(w—}—y) =log v/ (w — z)(w+y).

Exponentiating and then squaring both sides and rearranging gives

wy

r=— .
w+y



For power utility, we have

This implies

r=w-— 207" — (w+y) "] Y=

(c) Suppose the person has wealth of $100,000 and faces a gamble as in Part (a). Use the answer
in Part (a) to calculate the amount he would pay to avoid the gamble, for various values of p
(say, between 0.5 and 40), and for z = $100, z = $1,000, 2 = $10,000, and = = $25,000. For
large gambles, do large values of p seem reasonable? What about small gambles?

Solution:

p z=%$100 x=%1,000 «=%10,000 =z =$25,000
0.5 $0.03 $2.50 $251 $1,588
1 $0.05 $5 $501 $3,175
2 $0.10 $10 $1,000 $6,250
5 $0.25 $25 $2,434 $13,486
10 $0.50 $50 $4,424 $19,086
15 $0.75 $75 $5,826 $21,198
20 $1.00 $99 $6,763 $22,214
30 $1.50 $148 $7,832 $23,186
40 $2.00 $195 $8,387 $23,655

For the largest gamble, p > 5 (or, perhaps p > 2) would seem unreasonable. But, for p < 5,

the premium for the $100 gamble is $0.25 or less, which may be too small.
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(d) Suppose p > 1, and the person is offered a gamble as in Part (b). Show that he will reject

the gamble no matter how large y is if

z 1/(p-1) log(0.5) +log(1 — z/w)
> 1-0. > ‘
w v = or= log(1 — z/w)

For example, with wealth of $100,000, the person would reject a gamble in which he loses
$10,000 or wins 1 trillion dollars with equal probabilities when p satisfies this inequality for
x/w = 0.1. What values of p (if any) seem reasonable?

Solution: Given 1 — p < 0, the person rejects the gamble if
w!'™? < 0.5(w — )P 4+ 0.5(w + y)' "
This is true for all y > 0 if

w' TP <05w—2)'" & w>05T7(w—x)

e Zx1-05mT
w
& 05rT>1-2
w
1
& P log(0.5) > log(1 — z/w)
o 1 < log(1l — x/w)
p—17 log(0.5)
log(0.5)
1> e\
< PT N og(l — z/w)
o S log(0.5) + log(1 — x/w)
log(1 — xz/w)

Thus, all gambles involving 1% losses are rejected if p > 70, 2% losses if p > 36, 10% losses if
p > 7.6, 25% losses if p > 3.5, and 50% losses if p > 2. Surely, there should be some possible
gain that would compensate someone for a 50% chance of a 10% loss, implying p < 7.6. One

could obviously argue for even smaller p.



1.3. This exercise is a very simple version of a model of the bid-ask spread presented by Stoll

(1978). Consider an individual with constant absolute risk aversion a. Assume @ and ¥ are joint

normally distributed with means ji,, and p,, variances o2 and o2 and correlation coefficient p.

(a)

Compute the maximum amount the individual would pay to obtain @ when starting with Z;

that is, compute BID satisfying
E[u(z)] = E[u(Z + w — BID)].
Solution: Note that
- I -
E[u(w)] = —exp | —aE[w] + 50 var(w) | .
We have
1
Elu(w+z—BID)] = —exp <—aE[7IJ] — aE[Z] + oBID + §a2[var(w) + 2cov(Z,w) + var(i:)]) .
Thus, BID satisfies
- 1, R -
1 =exp | —aE[Z] + aBID + 5@ [2cov(Z,w) + var(Z)] | .
This implies

1
BID = E[Z] — accov(Z,w) — e var(Z) = iy — apopoy — 300z -

Compute the minimum amount the individual would require to accept the payoff —w when

starting with Z; that is, compute ASK satisfying
E[u(z)] = E[u(Z — w + ASK)] .
Solution: We have

E[u(w—2+ASK)] = —exp <—aE[1Z)] + aE[Z] — aASK + %oﬁ [var(w) — 2 cov(Z,w) + V&r(i‘)]) .
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Thus, ASK satisfies
- 1, . 8
1 =exp | aE[Z] — €ASK + e [—2cov(z, W) + var(z)] | .

This implies

1 1
ASK = E[Z] — avcov(Z,w) + e var(Z) = pg — apoyoy + 50“7325 .

Note that the bid-ask spread is ASK — BID = ao?2.

1.4. Calculate the mean, variance, and skewness of the following two random variables:

2.45 with probability 0.5141,

7.49 with probability 0.4859,

\

0 with probability 0.12096 ,

W2 = N 4.947 with probability 0.750085,

10 with probability 0.128955 .

You should see that wo has a higher mean, lower variance, and higher skewness than w;. Show
that, nevertheless, w; is preferred to we by a CARA investor with absolute risk aversion equal to 1,
by a CRRA investor with relative risk aversion equal to 1/2, and by an investor with shifted log

utility log(1 + w).

Solution: Let p;, 0'1-2 and -; be the mean, variance, and skewness of the random variable w;:

p1 = 4.8989, 03 = 6.3453, v, = 0.0564

po = 5.0002, 05 = 6.2410, 72 = 0.0637

CARA investor with absolute risk aversion equal to 1: u(w) = —e™*, so Efu(w;)] = —0.0446 and

E[u(i,)] = —0.1263
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CRRA investor with relative risk aversion equal to 1/2: u(w) = 2w%5, so E[u(w)] = 4.2690 and

Elu(wy)] = 4.1522

An investor with shifted log utility: u(w) = log(1+w), so E[u(wi)] = 0.7278 and E[u(ws)] = 0.7151

1.5. Consider a person with constant relative risk aversion p.

(a) Verify that the fraction of wealth he will pay to avoid a gamble that is proportional to wealth
is independent of initial wealth (that is, show that 7 defined in (1.15) is independent of w for

logarithmic and power utility).
Solution: For log utility, the left-hand side of (1.15) is
log((1 — m)w) = log(1l — ) + logw,

and the right-hand side is

Ellog((1 + &)w)] = E[log(1 + &)] + logw ,
so (1.15) is equivalent to
log(1 —7) =E[log(14+¢)] < 7w=1-—exp(E[log(l+2)]).

Hence, 7 does not depend on w. For power utility, the left-hand side of (1.15) is

() = -t
and the right-hand side is

E |7 (1 +2w)! | = e (149

so (1.15) is equivalent to

1-m P =E[1+8)F] o n=1-(E[1+5)7])T .
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Hence, © does not depend on w.

(b) Consider a gamble £. Assume 1+ £ is lognormally distributed; specifically, assume 1+ & = e,
where Z is normally distributed with variance 0? and mean —c?/2. By the rule for means of

exponentials of normals, E[¢] = 0. Show that 7 defined in (1.15) equals
1—ero/2,
Note: This is consistent with the approximation (1.5), because a first-order Taylor series

expansion of the exponential function e” around = = 0 shows that e® ~ 1 + = when |z| is

small.

Solution: We have E[log(1 + &)] = E[2] = —0%/2, so the proportional risk premium for log
utility is

T=1—e7°/2,

For p #£ 1,
E [(1 + g)l—p] —E [e(l—ﬂ)i] — o~ (=p)a?/2+(1=p)?0?/2 _ —p(1-p)o?/2
Therefore, the proportional risk premium is
r=1—er"/2,
1.6. Use the law of iterated expectations to show that if E[£|g] = O then cov(y,&) = 0 (thus
mean-independence implies uncorrelated).

Solution: By iterated expectations and mean-independence,

E[ye] = E[yE[eg]] = 0.
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Furthermore,

E[¢] = E[E[]g]] = 0.
Therefore,
cov(y,€) = E[ye] — E[g]E[] = 0.
1.7. Let § = %, where Z is normally distributed with mean yp and variance o>. Show that

stdev(y)

2
— =ve ™ —1.
E[7]

Solution: ~We have E[j] = e#*7°/2 and

var(j) = E[j°] — E[g)?
—E [e%] . 62(u+02/2)

2 2
— e2,u+20 . eQ,quU

SO

stdev(j) = E[§] Ve — 1.

1.8. The notation and concepts in this exercise are from Appendix A. Suppose there are three
possible states of the world which are equally likely, so 2 = {w1, w2, ws} with P({w1}) = P({wa}) =

P({ws}) = 1/3. Let G be the collection of all subsets of (2:

g= {@, {wl}v {w2}7 {W3}, {whw?}ﬂ {wla "‘)3}’ {w27 W3}, “Q} :

Let Z and § be random variables, and set a; = Z(w;) for i« = 1,2,3. Suppose g(w1) = by and

§(wz2) = §(ws) = bz # b1.
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(a) What is prob(Z = aj|g=0b;) fori=1,2and j =1,2,37

Solution:

(b) What is E[% |§ = b;] for i = 1,27

Solution:

(¢c) What is the o—field generated by g ?

Solution: The o—field generated by 7 is
{07 {(,Ul}, {CUQ, w?)}u Q} .

1.9. Suppose an investor has log utility: u(w) = logw for each w > 0.

(a) Construct a gamble w such that E[u(w)] = co. Verify that E[@] = oc.
Solution:  Consider flipping a sequence of coins and having wealth €2 if the first heads
appears on the n—th toss. The probability of the first heads appearing on the n—th toss is

27" so the expected utility is

ianlog(e?l) :il =00.
n=1

n=1



(b)
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Construct a gamble @ such that @ > 0 in each state of the world and E[u(w)] = —ooc.
Solution: Consider flipping coins and having wealth e=2" if the first heads appears on the

n—th toss. The expected utility is

iQ*" log (e*Qn) = i —1=—00.
n=1 n=1

Given a constant wealth w, construct a gamble € with w + £ > 0 in each state of the world,
E[] = 0 and E[u(w + &)] = —oc.
Solution: Obviously, there are many ways to do this. Here is one. Let 0 < § < 1 be such

that

On this event, we have
(o]
w+E= (1+5)w—5z2*”e*2n >0.
n=1

Forn=1,2,..., let

—on

(O}
I
¢
|
g

with probability p2~". Then w + € > 0 in each state of the world, and

Ee]=(1—p)d <w - i 2"62n> +p
n=1
=[(1—-p)d —p] (w — Z 2_"6_2n>
n=1

=0.

i 27" (e*2n — w)]
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Moreover,

ir” log (e—2")] = —00.

oo
Elu(w+¢)] = (1 —p)log ((1 +dw—246 Z 2_”e_2n> +p
n=1 n=1
1.10. Which LRT utility functions are DARA utility functions with increasing relative risk aversion,

for some parameter values? Which of these utility functions are monotone increasing and bounded

on the domain w > 07

Solution: Shifted log and shifted power utility functions have absolute risk aversion p/(w — ()
and relative risk aversion pw/(w — (), with p = 1 being shifted log. Absolute risk aversion is
decreasing in w. Relative risk aversion is increasing in w if ¢ < 0. The shifted power utility

function is monotone increasing and bounded on the domain w > 0 if { < 0 and p > 1.

1.11. Show that condition (ii) in the discussion of second-order stochastic dominance in the end-
of-chapter notes implies condition (i); that is, assume § = & + Z + & where Z is a nonpositive
random variable and E[¢ |  + Z] = 0 and show that E[u(Z)] > E[u(g)] for every monotone concave
function w.

Note: The statement of (ii) is that § has the same distribution as & + Z + &, which is a weaker
condition than § = & + Z + &, but if § has the same distribution as Z + 2 + ¢ and ¢ = & + 2 + ¢,
then E[u(g)] = E[u(7')] so we can without loss of generality take § = & + Z 4+ & (though this is not

true for the reverse implication (i) = (ii)).

Solution: ¢ equals Z + Z plus mean-independent noise, so by concavity and Jensen’s inequality,
E[u(Z + 2)] > E[u(y)], as shown in Section 1.5. Because Z is nonpositive and w is monotone,

E[u(z)] > E[u(Z + 2)]. Therefore, E[u(Z)] > E[u(y)].

1.12. Show that any monotone LRT utility function is a monotone affine transform of one of the

five utility functions: negative exponential, log, power, shifted log, or shifted power. Hint: Consider
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first the special cases (i) risk tolerance = A and (ii) risk tolerance = Bw. In case (i) use the fact

that

"(w) _ dlogu/(w)
"(w) dw

and in case (ii) use the fact that

wu(w)  dlogu/(w)

u'(w)  dlogw

to derive formulas for log v/(w) and hence u/(w) and hence u(w). For the case A # 0 and B # 0,

vwo=u<w;A),

show that the risk tolerance of v is Bw, apply the results from case (ii) to v, and then derive the

define

form of w.

Solution: In case (i), set @« = 1/A. For any constant y,

“ dlogu'(z)

d
dx o

loga(w) =logu'(s) + [

y

= logu'(y) + —a/ dz
y

=logu/(y) —a(w —y).

Hence,

This implies
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—ow

This is an affine transform of —e . For u to be monotone, it must be a monotone affine transform

aw

of —e~

In case (ii), set p = 1/B. For any constant y > 0 and any w > 0,

v dlogu/(z)

dl
dlogx 08T

log v/ (w) = log ' (y) + /

y

=logu/(y) — p/ dlogx
y

=logu/(y) — p(logw — logy) .

Hence,

() = uf (y)e I = o/ ()PP

This implies

If p =1, then
u(w) = u(y) + v (y)y(logw — log y) ,

which is a monotone affine transform of logw. If p # 1, then

which is an affine transform of w!=?/(1 — p). For u to be monotone, it must be a monotone affine
transform of w!'=?/(1 — p).

For the case A # 0 and B # 0, set
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for z > 0. This implies

Therefore, from case (ii), on the region x > 0, either v(z) = logz if B =1, or v(z) = 2'=*/(1 — p)

for p = 1/B, up to an affine transform. Moreover,
u(w) =v(A+ Bw).

Hence, for w such that A + Bw > 0, either u(w) = log(A + Bw) if B = 1, or u(w) = (A +
Bw)'=P/(1 — p) for p = 1/B, up to an affine transform. Setting ( = —A/B, we have, up to an

affine transform, u(w) = log(w — ¢) on the region w > ( if B =1, or

u(w) = —— (M) |

S 1-p\ p

on the region (w — ¢)/p > 0. Monotonicity of u in the case B # 1 requires that u be a monotone

P<w—<>1_”
1—=p\ »p '

1.13. Show that risk neutrality [u(w) = w for all w]| can be regarded as a limiting case of negative

affine transform of

exponential utility as a« — 0 by showing that there are monotone affine transforms of negative
exponential utility that converges to w as a — 0. Hint: Take an exact first-order Taylor series
expansion of negative exponential utility, expanding in a around o = 0. Writing the expansion as

cop + ci1a, show that

—aqw __ o

as a — 0.
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Solution: Set f(a) = —e~*". We have

fla) = 1(0) + f'(@)a

for some 0 < & < «, and f'(«a) = we™*". Thus,

—eT MW = 1 4+ we Wa,
This implies
—e” M 41 —a
— =we " s w,
@

as o — 0.
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