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Overview



What We Do

• Simulate the Berk-Green-Naik (1999) model

• 1,000 firms, monthly data, 60 years

• Calculate return, size, book-to-market, ROE, asset growth, and

momentum

• Repeat 300 times

• Evaluate factor models defined from characteristics

• Fama-French

• Fama-MacBeth-Rosenberg

• Didisheim, Ke, Kelly, and Malamud (2024) complexity

• Kelly, Pruitt, Su (2019) instrumented PCA
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• Assess models by Hansen-Jagannathan distances and Sharpe ratios

• Can calculate true conditional moments and true conditional SDF

• Conclusions:

• KPS > DKKM > Fama-French and Fama-MacBeth-Rosenberg

• Performance improves in DKKM up to hundreds of factors

• Suggests hybrid model (next on our agenda)
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Berk-Green-Naik Model



Projects

• One-period SDFs are iid lognormal.

• Vasicek interest process. Shocks correlated with SDF.

• Firms start with zero capital. Get one project per month. Dies if not

taken.

• Each invested project → operating cash flows monthly until random

death. Cash flows correlated with SDF.

• Each project has unique SDF beta and unique idiosyncratic risk.

• Take all positive NPV projects (depends on beta and interest rate).

• No debt. Free cash flow paid out to shareholders.
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Firm Values and Characteristics

• Value of growth options same for all firms (depends on interest rate).

• Assets in place depends on past project characteristics and past

interest rates..

• Value of assets in place also depends on current interest rate.

• Can calculate size, book-to-market, profitability, asset growth, and

momentum.
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Mechanisms

• Small firms are mostly growth options. Riskier and higher expected

return.

• Given market cap, value firms have more projects (higher book) of

lower average value. Low project value ∼ high beta ∼ high expected

return.
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Panels

• Simulate 300 panels of 1,000 firms and 920 months

• Discard first 200 months to reach steady state

• Calculate unique SDF in span of assets each month in each panel
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Factor Models



Background: Brandt/Santa-Clara/Valkanov (2009)

• Start with one portfolio for

each characteristic.

• For high-minus-low portfolio,

go longer when char is higher,

shorter when char is lower.

• In other words, portfolio

weights are standardized

(monotone in) characteristic

values.

• Choose the linear combination

(portfolio of portfolios) that

achieves the highest average

utility in past sample.
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Didisheim, Ke, Kelly, and Malamud (2024)

• Expand number of

characteristics (= portfolios) to

as many as 1 million

• Random linear combinations

• Then sines and cosines

• Ridge ⇔ maximize quadratic

utility with penalization

(Hansen/Richard,

Britten-Jones)

• Approximate frontier portfolio

generates approximate SDF
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Kelly, Pruitt, and Su (2019)

• Latent factor pricing model

(small # of factors)

• Factor loadings are linear

combinations of characteristics

plus noise.

• Estimate latent factors
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Kelly, Pruitt, and Su SDF

• Can apply ridge (or

OLS) as in DKKM to

estimate SDF

• OLS probably better

with small # of factors

LSU Mardi Gras Conference, March 2025 10



Sharpe Ratios

• Calculate conditional

Sharpe ratios each

month

• Average across months

in each panel

• Produces 300

observations for each

model
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Hansen-Jagannathan Distances

• Calculate realization of

(ŜDF− SDF)2 each

month

• Average across months

in each panel

• Produces 300 estimates

of unconditional HJ

distance for each model
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Classical Models

• Fama-French-Carhart 6-factor model

• Fama-MacBeth-Rosenberg 6-factor model

• Fama-MacBeth regression coefficients are linear functions of returns,

hence portfolio returns.

• Weights in implicit portfolios sum to zero, hence long-short portfolio

returns.

• Scale weights to sum to 1 on both long and short sides.

• Get single portfolio and SDF as for KPS (use OLS).
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Results



Performance of DKKM (Sharpe Ratios)
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KPS, FFC, & FMR (Sharpe Ratios)
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FMR vs FFC

Sharpe Ratio HJ Distance

FMR 0.213 0.239

FFC 0.212 0.238

FMR - FFC 0.001 0.001

t-stat 1.779 0.499

p-value 0.076 0.618
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t-statistics for DKKM vs FMR (Sharpe Ratios)

# factors 6 36 360 3600 36000

penalization

0 3.61 -28.80 -117.87 -112.57 -112.54

0.001 3.78 -6.32 -14.26 -15.26 -15.37

0.005 4.07 2.90 1.24 1.02 1.01

0.01 4.12 6.13 5.69 5.61 5.61

0.05 2.77 7.34 8.02 8.08 8.09

0.1 1.34 5.30 6.04 6.11 6.12
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t-statistics for DKKM vs FMR (HJ Distances)

# factors 6 36 360 3600 36000

penalization

0 -6.89 13.54 38.74 44.47 45.99

0.001 -6.91 3.72 8.12 8.63 8.76

0.005 -6.41 -4.87 -3.19 -3.05 -3.03

0.01 -5.61 -9.01 -8.41 -8.38 -8.36

0.05 -0.87 -5.66 -6.52 -6.63 -6.64

0.1 2.28 -0.99 -1.62 -1.69 -1.70
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t-statistics for KPS

Sharpe Ratios

# factors 1 2 3 4 5 6

vs DKKM -47.18 23.11 13.57 5.49 -0.84 -6.34

vs FMR -39.09 19.26 22.01 19.00 12.63 4.67

Hansen-Jagannathan Distances

# factors 1 2 3 4 5 6

vs DKKM 26.92 -3.42 -2.05 0.34 3.20 5.02

vs FMR 11.46 -12.52 -12.65 -9.60 -4.44 -0.26
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Conclusion



Conclusion

• DKKM outperforms FFC and FMR in the BGN model.

• Performance is increasing in number of factors up to several

hundred, despite simplicity of the BGN model.

• Performance plateaus at several hundred factors but does not

deteriorate up to 36,000 factors.

• Dispersion of panel statistics is less in DKKM model than in FFC

and FMR, despite the fact that factors are randomly generated.

• KPS outperforms DKKM.

• Possible hybrid model: replace ridge in DKKM with IPCA and OLS.
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