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We simulate multiple panels of firm characteristics and stock

returns from the Berk, Green, and Naik (1999) equilibrium model.

The characteristics identified in the model are the four Fama

and French (2015) characteristics plus momentum. We eval-

uate the performance of the Fama-French-Carhart model, the

Fama-MacBeth-Rosenberg model, and the random Fourier fea-

tures model proposed by Didisheim et al. (2024). We find that

the last model outperforms the other two, and performance is in-

creasing in the number of Fourier features up to at least several

hundred.
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The goal of this project is to perform Monte Carlo analysis of factor con-

struction methodologies. We examine classical methodologies (Fama and

French, 2015; Fama and MacBeth, 1973; Rosenberg, 1974) and a very re-

cent proposal: random Fourier features (Didisheim et al., 2024, , hereafter

DKKM). We compare methods based on Hansen-Jagannathan distances

and Sharpe ratios. We assess statistical significance by generating a sam-

ple of independent panels. We are able to avoid some of the sampling

error inherent in empirical evaluations because we can compute the true

theoretical conditional stochastic discount factor and conditional moments

at each date in each panel.

A prime difficulty in assessing factor models via Monte Carlo is that

one must choose a data generating process, and the choice of a process

may dictate the outcome. To avoid biasing the outcome through selection

of the data generating process, we use an off-the-shelf equilibrium model.

Berk, Green, and Naik (1999), hereafter BGN, develop a rational pricing

model in which firm characteristics such as size and book-to-market have

explanatory power for returns. We simulate their model. In the model,

it is possible to calculate the four characteristics used in the five-factor

Fama and French (2015) model and also momentum. We evaluate factor

construction methods based on those five characteristics.

DKKM consider a very large number of factors, prompting the term

“complexity” in their title. However, as the authors make clear, and as is

well understood, the ultimate goal is to derive a single factor model, the

single factor being an estimate of the stochastic discount factor (SDF).

The essence of the DKKM methodology is to generate many random factor

portfolios and then use penalized regression to form a single factor of the

form β̂′
tft+1, where ft+1 denotes the (perhaps very large) vector of generated

factor returns from t to t+1, and β̂t is the vector of regression coefficients

at t. This process should in principle allow the data more freedom to speak

regarding what the SDF is than if we start with a small number of factors

as is commonly done. The question we address in this paper is whether
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this principle has any effect in the relatively simple BGN economy.

Our findings are that the DKKM methodology outperforms the classical

models in the BGN economy. Furthermore, performance is increasing in

the number of factors up to several hundred factors, at which point it

plateaus. Remarkably, despite the fact that the DKKM method is based

on a large number of randomly constructed factors, the standard deviations

across simulated panels of sample Sharpe ratios and Hansen-Jagannathan

distances of the DKKM model are less than those of the classical models.

In more complex economies, and especially when more characteristics are

available to study, it seems likely that, as DKKM argue, it is beneficial

to generate thousands or even hundreds of thousands of factors before

attempting to consolidate them into an estimate of the SDF.

The DKKM methodology is an extension of the portfolio construction

methodology of Brandt, Santa-Clara, and Valkanov (2009), hereafter BSV.

BSV de-mean characteristics in each cross-section, so they can be used as

portfolio weights in a long-short portfolio, and consider portfolios as lin-

ear combinations of characteristics. They recommend using the portfolio

of this type that maximizes the past sample mean of a utility function.

DKKM generate many additional characteristics as sines or cosines of ran-

dom linear combinations of the original characteristics. Like BSV, they

de-mean these generated characteristics in each cross section, and they con-

sider portfolios that are linear combinations of the characteristics. They

select the portfolio of this type that maximizes the past sample mean of

the quadratic utility function −(1 − r)2, where r is the portfolio excess

return, except that they impose L2 penalization in the maximization to

avoid overfitting. They use this portfolio as an estimate of a mean-variance

frontier portfolio and use itto estimate the stochastic discount factor.

We describe the BGN model in the next section. Section 2 describes how

we assess factor models. Section 3 describes the factor models we study.

Section 4 presents our results. Section 5 concludes.
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1 Berk-Green-Naik Model

In the BGN model, firms invest optimally given an exogenous pricing ker-

nel and random investment opportunities. The stochastic discount factor

(SDF) at date t for pricing cash flows at t+ 1 is

mt+1 := e−rt− 1
2σ

2
m+σmεt+1 . (1.1)

The interest rate process is a Vasicek (1979) process:

rt+1 = rt + κ(µ− rt) + σrηt+1 . (1.2)

Here, ε and η are independent sequences of iid standard normals.

There are a fixed number of firms. Each firm begins at date 0 with zero

capital. Each firm receives an investment opportunity each period. The

opportunities expire if not taken in the period in which they arrive. All

projects require the same amount of capital I and are fully equity financed.

A project that is taken generates operating cash flows each period until it

randomly dies. Free cash flow is paid out to shareholders.

The operating cash flow of each project has a time-invariant beta with

respect to the SDF process shocks ε and a time-invariant idiosyncratic

risk. The betas and idiosyncratic risks are drawn randomly for each firm

and date from fixed distributions. A project’s NPV depends on its beta

and on the level of interest rates. Firms accept all positive NPV projects.

Because the project arrival processes are the same across firms, all firms

have the same value of growth options at any point in time. The value of

growth options varies over time, because of variation in the interest rate.

The value of assets in place varies across firms at each point in time due

to differences in past project quality. The value of assets in place also

depends on the interest rate.

The model generates the following data for each firm each period:

• book value of equity = book value of assets

• market value of equity
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• net income = operating cash flow

• stock return

From these, we calculate size, book-to-market, ROE, asset growth, and

momentum (t− 12 through t− 2 returns). BGN show that size, book-to-

market, and momentum are correlated with subsequent returns.

We calibrate the model following BGN, and simulate it with a period

length of one month, as do BGN. Like BGN, we discard the first 200

months to allow the economy to reach a steady state. The following fig-

ures present a single simulated panel of 1,000 firms for 720 months (after

discarding the first 200). The exact data shown in these figures is not im-

portant, but we provide them to illustrate general features of the model.

Figure 1.1 shows a path of the interest rate process. Figures 1.2–1.5

provide information regarding the cross-section of firms at four distinct

dates. Figure 1.2 shows the number of active projects across firms. The

book equity of a firm equals its number of active projects multiplied by

the cost of each project, so Figure 1.2 also provides information about the

dispersion of book equity across firms. Figure 1.3 shows the distribution of

market equity across firms. Aggregate market equity is relatively high at

month 400 and relatively low at month 900 due to differences in the level

and history of the interest rate. The level affects both the value of assets

in place and the value of growth options, and the history affects the value

of assets in place due to the effect of the interest rate on project choice.

Figure 1.4 shows the distribution across firms of four firm characteristics:

book-to-market, momentum, profitability, and asset growth. Figure 1.5

shows the distribution of returns. As in the actual data, the cross-sectional

distribution of returns is leptokurtic and positively skewed.

To compute theoretical conditional moments in the BGN model, we need

the list of all current projects for every firm – the number of projects

and each project’s beta and idiosyncratic risk, and we need to know the

current interest rate. Past project decisions depend on past interest rates

as well as project betas, so the economy is path dependent. To put it
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Figure 1.1: A path of the Vasicek interest rate process with the BGN calibration.
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another way, the state space of the economy is very large. Nevertheless,

we can compute the theoretical conditional moments. We compute the

true conditional SDF each period and the true conditional Sharpe ratios

of factor portfolios.

2 Assessing Factor Models

We follow DKKM closely in our evaluation of models. Hansen and Richard

(1987) show that the efficient part of the mean-variance frontier is the set

of returns rf,t+ bzt+1 for b ≥ 0, where rf,t denotes the risk-free rate from t

to t+1, and zt+1 is the projection of the constant 1 on the space of excess

returns from t to t+1. The residual 1−zt+1 in the projection is orthogonal

to excess returns. The unique conditional SDF in the span of the asset

returns is
1− zt+1

(1 + rf,t)Et[(1− zt+1)2]
. (2.1)

In the factor models that we study, all factors are excess returns. There

is a similar representation of the mean-variance frontier spanned by each

set of factors and the risk-free asset. Given a set of factors, let yt+1 denote
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the projection of the constant 1 on the set of factor portfolio returns from t

to t+1, so {rf,t+ byt+1 | b ≥ 0} is the efficient part of the frontier spanned

by the risk-free asset and the factor returns. The unique conditional SDF

in the span of the factors and the risk-free asset for pricing the factors and

the risk-free asset is
1− yt+1

(1 + rf,t)Et[(1− yt+1)2]
. (2.2)

In each factor model and at each date t, we estimate yt+1 by regressing

the constant 1 on the factors (without an intercept and possibly with pe-

nalization) using the previous 360 months of returns. Britten-Jones (1999)

uses this type of regression (without penalization) to compute the mean-

variance frontier. DKKM use ridge regression to mitigate overfitting and

to allow even more factors than time periods in the regression. Denoting

the vector of regression coefficients by β̂t and the factor returns from t to

t+ 1 by ft+1, we compute ŷt+1 = β̂′
tft+1.

Motivated by Hansen and Jagannathan (1997), we calculate the realiza-

tion of (ŷt+1 − zt+1)
2 each period as a measure of how far the estimated

SDF is from the SDF and we compare mean values across models. The

mean of (ŷt+1 − zt+1)
2 is a measure of how accurately the factor model

prices assets and also a measure of how close the factor model comes to

spanning the mean-variance frontier. As a second measure of how well the

factors span the frontier, we compute the theoretical Sharpe ratio of ŷt+1

each period and compare mean values across models.

3 Models

We replicate the Fama and French (2015) construction of SMB, HML,

RMW, and CMA and include UMD as well as the value-weighted market

excess return to form the six-factor Fama-French-Carhart (FFC) model.

We also run Fama and MacBeth (1973) regressions on book-to-market,

momentum, profitability, and asset growth. We standardize the portfolios

implicit in the Fama-MacBeth regressions (Rosenberg, 1974; Fama, 1976)
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to be 100% long and 100% short and use the portfolio returns in conjunc-

tion with the equally weighted market excess return to form what we call

the Fama-MacBeth-Rosenberg (FMR) model.1

We use the same five characteristics to implement the DKKM method.

DKKM use random Fourier features to create potentially a very large

number of factors. We follow their recipe to form various sets of what

we call DKKM factors, ranging from a six factor model to a model with

36,000 factors.

The DKKM method begins by standardizing each characteristic in each

cross-section, replacing the raw characteristic values with percentiles and

then subtracting 0.5 to get ranks between −0.5 and +0.5. Let Ct denote

the 5 × n matrix of standardized characteristics at date t, where n is the

number of assets. From Ct, we generate an nf × n matrix of random

characteristics as follows. Let W denote a
nf

2 × 5 matrix whose entries

are sampled from the standard normal distribution, and let γ denote a

length
nf

2 vector whose entries are sampled uniformly from {0.5, 0.6, . . . , 1}.
We use the same W and γ for all t. Set At = γ ⊙ WCt, where γ ⊙ W

denotes element by element multiplication of γ with each column of W .

We compute an nf × n matrix of random characteristics from the
nf

2 × n

matrix At by taking sines and cosines of the elements of At and stacking

the sines and cosines as separate rows. We then rank standardize the rows

of this matrix, replacing the raw characteristic values with percentiles and

then subtracting 0.5 to get ranks between −0.5 and +0.5. Each row of

this matrix can be interpreted as a long-short portfolio. The returns of

the portfolios from t to t+ 1 are the DKKM factor realizations ft+1 from

t to t+ 1.

We use ridge regression to form the estimate β̂′
tft+1. We vary the penalty

parameter in the ridge regression to create multiple estimates. To mitigate

the effect of randomness in the draws of the random Fourier features, we

1We use the equal weighted market excess return because the FMR regressions weight stocks equally.
The equally weighted market excess return is the intercept in the FMR regression when the char-
acteristics are de-meaned in each cross section. We could run weighted FMR regressions to achieve
value weighting or something between equal and value weighting, but we do not explore that.
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follow DKKM by generating 20 samples of W and γ, and, for each value

of α, we average the 20 estimates β̂′
tft+1 to produce our final estimate ŷt+1

for that value of α.

The ridge regression is

min
β

0∑
i=−359

(1− β′ft+i)
2
+ αβ′β , (3.1)

where α is the penalty parameter. More penalization is needed when the

number of factors nf is larger. To get a sense for how the penalty should

vary with the number of factors, consider doubling the number of factors

by simply replicating each factor. Then, to make β′β small, we will want

to split each beta evenly among the duplicate factors in each pair. This

reduces the sum of squared betas by 1/2. Therefore, to maintain the same

penalization, we should double α. Hence, we set α = κnf and vary κ. If

adding more factors is more effective than simply replicating factors, then,

for each value of κ, we should see performance improve as the number of

factors increases. We also look at what DKKM call ridgeless regression,

which can be interpreted as the limit of the ridge regression as α → 0 (it

is OLS when the number of factors is not larger than the number of time

periods). We explored ridge regression to form the estimates β̂′
tft+1 for the

FFC and FMR factors, but it always underperformed OLS, so in the next

section we only report the OLS results for FFC and FMR.

4 Results

As discussed before, we compute (ŷt+1 − zt+1)
2 and the theoretical condi-

tional Sharpe ratios Et[ŷt+1]/stdevt(ŷt+1). We do this for each of the 360

“out of sample” months in each of 500 simulated panels. We compute

sample means in each panel and compare the sample means across panels.
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4.1 Sharpe Ratios

The mean Sharpe ratio for the FFC model is 21.1% per month. The mean

Sharpe ratio for the FMR model is slightly higher at 21.4% per month.

Treating each panel mean as a single observation and conducting a paired

t-test for the 500 panel means, the difference between the FMR and FMC

Sharpe ratios is statistically significant, with a p-value of 0.003. We will use

the higher Sharpe ratios of the FMR model as a benchmark for evaluating

the DKKM model.

Figure 4.1 shows the mean Sharpe ratios for the DKKM model. With

sufficient penalization, performance improves up to 360 factors. Table 1

reports t-statistics for DKKM Sharpe ratios versus FMR Sharpe ratios.

We compute mean conditional Sharpe ratios in each panel and then com-

pare models across panels. With sufficient penalization, and a sufficient

number of factors, DKKM outperforms FMR and the outperformance is

statistically significant. The t statistics plateau at 360 factors.

101 102 103 104

Factors

0.200

0.205

0.210

0.215

0.220

M
ea

n 
Sh

ar
pe

 R
at

io

Kappa
0.001
0.005
0.01
0.05
0.1

Figure 4.1: The mean (across months and panels) conditional Sharpe ratio is shown for
various numbers of factors and various penalization parameters κ. Ridgeless
regression underperforms and is omitted for reasons of scale.
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Number of Factors

κ 6 36 360 3600 36000

0 4.88 -32.33 -163.09 -153.82 -153.51
0.001 5.00 -5.51 -14.99 -16.19 -16.31
0.005 5.25 5.20 3.52 3.34 3.32
0.01 5.24 8.99 8.78 8.76 8.76
0.05 3.30 9.85 10.82 10.90 10.90
0.1 1.41 6.89 7.83 7.90 7.91

Table 1: t-statistics for sample Sharpe ratios of DKKM versus FMR. 500 panels
of 720 months are generated for the BGN model. Conditional Sharpe ratios
are computed for each of the 360 out-of-sample months and the mean value
is computed in each panel for each model. The table reports t-statistics for
500 panel means of the DKKM model compared to the FMR model. κ = 0 is
ridgeless regression. A positive sign means that the DKKM model outperforms
the FMR model.

4.2 Hansen-Jagannathan Distances

We also compare models using the realized values (ŷt+1 − zt+1)
2. The

mean values, across months and panels, for the FFC and FMR models are

0.0589 and 0.0603, respectively. The difference is statistically insignificant,

but, because the FFC model slightly outperforms the FMR model on this

dimension, we compare the DKKM model to the FFC model in what

follows.

Figure 4.2 shows the means for the DKKM model. The means are es-

timates of the unconditional HJ distances. With sufficient penalization,

performance improves up to 360 factors. Table 2 reports t-statistics for

the 500 panel means of the DKKM models versus the FFC model. As with

Sharpe ratios, DKKM outperforms on HJ distances for sufficent penaliza-

tion and a sufficient number of factors. Also as with Sharpe ratios, the t

statistics plateau at 360 factors.

Figure 4.3 shows the distribution across panels of mean Sharpe ratios

and mean values of (ŷt+1 − zt+1)
2 of the DKKM model with κ = 0.05 and

360 factors and the FMR model. The DKKM model outperforms on both

dimensions in a statistically significant fashion. An interesting property

of the data that is illustrated in the figure is that the dispersion of values
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Figure 4.2: The mean (across months and panels) value of (ŷt+1 − zt+1)
2 is shown for

various numbers of factors and various penalization parameters κ. Ridgeless
regression underperforms and is omitted for reasons of scale.

for the DKKM model is less than that of the FMR model. This is despite

the fact that the DKKM model has 360 randomly generated factors. This

highlights the fact that building a composite factor from a large number of

factors can better allow the data to speak regarding what the single factor

should be.
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Number of Factors

κ 6 36 360 3600 36000

0 -10.00 7.04 26.15 35.16 35.60
0.001 -10.12 2.14 6.35 6.77 6.88
0.005 -9.59 -6.20 -4.46 -4.27 -4.25
0.01 -8.57 -10.67 -9.75 -9.59 -9.58
0.05 -3.31 -8.19 -8.89 -8.96 -8.97
0.1 0.08 -3.44 -4.01 -4.06 -4.07

Table 2: t-statistics for sample Hansen-Jagannathan distances of DKKM versus
FFC. 500 panels of 720 months are generated for the BGN model. The squared
difference between ŷt+1 and zt+1 is computed in each of the 360 out-of-sample
months and the mean value is computed in each panel for each model. The
table reports t-statistics for the 500 panel means of DKKM model compared to
the FFC model. κ = 0 is ridgeless regression. A negative sign means that the
DKKM model outperforms the FFC model.
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Figure 4.3: The distributions across panels of mean Sharpe ratios and mean values of
(ŷt+1 − zt+1)

2 are shown for the DKKM model with κ = 0.05 and 360 factors
and the FMR model.
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5 Conclusion

The dynamics of the BGN economy does not have a simple state-variable

representation, but it is still a fairly simple economy with only two macro

shocks each period. Despite the simplicity of the environment, the DKKM

“complexity” method outperforms classical factor models. Subsequent re-

search should analyze the DKKM method and other recent proposals for

factor construction in more complex simulated economies.
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