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Preliminaries



Review: Discrete-Time Martingales

• A martingale is a sequence of random variables Y such that

Ys = Es [Yt ] for all s < t.

• Equivalently, Es [Yt − Ys ] = 0.

• Consider any payoff at date u with value Wt at date t. Then

1. The sequence MtWt is a martingale (up to u).

2. The sequence
Wt

(1 + rf 1) · · · (1 + rft)

is a Q-martingale.

• This holds for any self-financing wealth process W , meaning that no

money is taken out or in after date 0 – e.g., a dividend-reinvested

asset price.
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Continuous-Time Model of a Stock Price

• Notation: S = stock price, B = Brownian motion, µ and σ are

constants or stochastic processes.

• Stock price model:
dS

S
= µdt + σ dB

• µdt = expected rate of return, σ dB = risk

• Our goal is to understand what equations like this mean and to learn

how to work with them.

• The first task is to explain Brownian motion.
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Stochastic Process

• A stochastic process X in continuous time is a collection of random

variables Xt for t ∈ [0,∞) or for t ∈ [0,T ].

• The state of the world ω determines the value Xt(ω) at each time t.

• A stochastic process can be viewed as a random function of time

t 7→ Xt(ω).

• For a given ω, the function of time is called a path of the stochastic

process.
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Brownian Motion



Brownian Motion

• A Brownian motion is a continuous-time stochastic process B with

the property that, for any dates t < u, and conditional on

information at date t, the change Bu − Bt is normally distributed

with mean zero and variance u − t.

• Equivalently, Bu is conditionally normally distributed with mean Bt

and variance u − t. In particular, the distribution of Bu − Bt is the

same for any conditioning information and hence is independent of

conditioning information. This is expressed by saying that the

Brownian motion has independent increments.

• We can regard ∆B = Bu − Bt as noise that is unpredictable by any

date–t information. The starting value of a Brownian motion is

typically not important, because only the increments ∆B are usually

used to define the randomness in a model, so we can and will take

B0 = 0.
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Brownian Motion and Information

• A Brownian motion with respect to some information might not be a

Brownian motion with respect to other information.

• For example, a stochastic process could be a Brownian motion for

some investors but not for better informed investors, who might be

able to predict the increments to some degree.

• It is part of the definition of a Brownian motion that the past values

Bs for s ≤ t are part of the information at each date t.
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Continuous Nondifferentiable Paths

• The paths of a Brownian motion make many small up-and-down

movements with extremely high frequency, so that the limits

lims→t(Bt − Bs)/(t − s) defining derivatives do not exist.

• With probability 1, a path of a Brownian motion is

• continuous

• almost everywhere nondifferentiable

• The name “Brownian motion” stems from the observations by the

botanist Robert Brown of the erratic behavior of particles suspended

in a fluid.
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Quadratic Variation of Brownian Paths

• Let B be a Brownian motion. Consider a discrete partition

s = t0 < t1 < t2 < · · · < tN = u

of a time interval [s, u].

• Consider the sum of squared changes

N∑
i=1

(Bti − Bti−1)
2

in some state of the world.

• If we consider finer partitions (i.e., increase N) with the maximum

length ti − ti−1 of the time intervals going to zero as N → ∞, the

limit of the sum is called the quadratic variation of the path of B.

• The quadratic variation of the path of a Brownian motion over any

interval [s, u] is equal to u − s with probability 1.
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Quadratic Variation of Usual Functions of Time

• The quadratic variation of any continuously differentiable function is

zero.

• Consider, for example, a linear function of time: ft = at for some

constant a.

• Taking ti − ti−1 = ∆t = (u − s)/N for each i , the sum of squared

changes over an interval [s, u] is

N∑
i=1

(fti − fti−1)
2 =

N∑
i=1

(a∆t)2 = Na2
(
u − s

N

)2

=
a2(u − s)2

N
→ 0

as N → ∞.
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Total Variation of Brownian Paths

• Total variation is defined in the same way as quadratic variation but

with the squared changes replaced by the absolute values of the

changes.

• Brownian paths have infinite total variation (with probability 1).

• In general, for continuous functions, finite total variation ⇒ zero

quadratic variation.

• So, nonzero quadratic variation ⇒ infinite total variation.

• Infinite total variation means that if we were to straighten out a

path of a Brownian motion to measure it, its length would be

infinite. This is true no matter how small the time period over which

we measure the path.
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Martingales



Continuous Martingales

• A martingale is a stochastic process X with the property that

Et [Xu] = Xt for each t < u (equivalently, Et [Xu − Xt ] = 0).

• In discrete time, if M is an SDF process and W is a self-financing

wealth process, then MW is a martingale.

• A continuous martingale is a martingale for which all of the paths

are continuous (up to a null set).

• Every continuous martingale that is not constant has infinite total

variation.
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Levy’s Theorem

• Aa continuous martingale is a Brownian motion if and only if its

quadratic variation over each interval [s, u] equals u − s.

• Thus, if a stochastic process has (i) continuous paths, (ii)

conditionally mean-zero increments, and (iii) quadratic variation

over each interval equal to the length of the interval, then its

increments must also be

• (iv) independent of conditioning information and

• (v) normally distributed.

• It is possible to deform the time scale (speeding up or slowing down

the clock) to convert any continuous martingale into a Brownian

motion.

• Also, we can form continuous martingales from Brownian motions

via stochastic integrals.
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Itô Integral



Stochastic Integrals

If θ is a stochastic process adapted to the information with respect to

which B is a Brownian motion, is jointly measurable in (t, ω), and

satisfies ∫ T

0

θ2t dt < ∞

with probability 1, and if M0 is a constant, then we can define the

stochastic process

Mt = M0 +

∫ t

0

θs dBs

for t ∈ [0,T ]. This is called an Itô integral or stochastic integral.
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Approximating Stochastic Integrals

For each t, the stochastic integral can be approximated as (is a limit in

probability of)
N∑
i=1

θti−1(Bti − Bti−1)

given discrete partitions

0 = t0 < t1 < t2 < · · · < tN = t

of the time interval [0, t] with the maximum length ti − ti−1 of the time

intervals going to zero as N → ∞. Note that θ is evaluated in this sum

at the beginning of each interval [ti−1, ti ] over which the change in B is

computed.
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Differential Form

Given

Mt = M0 +

∫ t

0

θs dBs

we write

dMt = θt dBt

or, more simply,

dM = θ dB

We can define M from the formula dM = θ dB and the initial condition

M0 by “summing” the changes dM as

Mt = M0 +

∫ t

0

dMs = M0 +

∫ t

0

θs dBs .
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Itô Process

The sum of an ordinary integral and a stochastic integral is called an Itô

process. Such a process has the form

Yt = Y0 +

∫ t

0

αs ds +

∫ t

0

θs dBs ,

which is also written as

dYt = αt dt + θt dBt

or, more simply, as

dY = α dt + θ dB

We recover Y from this differential form by “summing” the changes dY

over time. The process α is called the drift of Y .
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Returns



Asset Return

• Suppose that between dividend payments the price S of an asset

satisfies
dS

S
= µdt + σ dB

for a Brownian motion B and stochastic processes (or constants) µ

and σ.

• We interpret dS/S as the instantaneous rate of return of the asset

and µdt as the expected rate of return.

• The equation for S can be written equivalently as

dS = Sµdt + Sσ dB.

• The real meaning is the “summed” version:

Su = S0 +

∫ u

0

Stµt dt +

∫ u

0

Stσt dBt
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Money Market Account

• Suppose there is an asset that is locally risk-free, meaning that its

price R satisfies
dR

R
= r dt

for some r (which can be a stochastic process).

• This equation for R can be solved explicitly as

Ru = R0 exp

(∫ u

0

rt dt

)
.

• We interpret rt as the interest rate at date t for an investment

during the infinitesimal period (t, t + dt).

• If the interest rate is constant, then Ru = R0e
ru, meaning that

interest is continuously compounded at the constant rate r .

• We call r the instantaneous risk-free rate or the locally risk-free rate

or the short rate.
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Portfolio Return

• A portfolio of the asset with price S (the risky asset) and the money

market account is defined by the fraction πt of wealth invested in

the risky asset at each date t.

• If no funds are invested or withdrawn from the portfolio during a

time period [0,T ] and the asset does not pay dividends during the

period, then the wealth process W satisfies

dW

W
= (1− π)r dt + π

dS

S

• This is called the intertemporal budget constraint. It states that

wealth grows only from interest earned and from the return on the

risky asset.
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Intertemporal Budget Constraint

The intertemporal budget constraint with no labor income and no

consumption is

dW

W
= (1− π)r dt + π

dS

S

= (1− π)r dt + πµdt + πσ dB

= r dt + π(µ− r)dt + πσ dB

We can also write it as

dW = rW dt + π(µ− r)W dt + πσW dB

With labor income Y and consumption C (both as rate per unit time), it

is

dW = rW dt + π(µ− r)W dt + πσW dB + Y dt − C dt
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Itô’s Formula



Notation for Quadratic Variation

• Convenient notation: (dB)2 = dt.

• The motivation comes from quadratic variation. Consider discrete

partitions

s = t0 < t1 < t2 < · · · < tN = u

of a time interval [s, u].

• With N → ∞ and the maximum length ti − ti−1 of the time

intervals going to zero,

N∑
i=1

(Bti − Bti−1)
2 =

N∑
i=1

(∆B)2

→
∫ u

s

(dB)2 =

∫ u

s

dt = u − s
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Quadratic Variation of a Stochastic Integral

The quadratic variation of a stochastic integral dMt = θt dBt

over an interval [s, u] is∫ u

s

(dMt)
2 =

∫ u

s

(θt dBt)
2 =

∫ u

s

(θt)
2(dBt)

2 =

∫ u

s

θ2t dt
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Quadratic Variation of an Itô Process

• More convenient notation: (dt)2 = 0, (dB)(dt) = 0.

• The motivation for (dt)2 = 0 is that the quadratic variation of a

continuously differentiable function of time is zero.

• The quadratic variation of an Itô process dXt = αt dt + θt dBt over

an interval [s, u] is∫ u

s

(dXt)
2 =

∫ u

s

(αt dt + θt dBt)
2 =

∫ u

s

(θt)
2(dBt)

2 =

∫ u

s

θ2t dt
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Variance and Quadratic Variation in Discrete Time

• Suppose M is a martingale in discrete time. Define X to be the

changes in M:

X1 = M1 −M0, X2 = M2 −M1, X3 = M3 −M2, . . .

• The process X is called a martingale difference series. It is serially

uncorrelated.

• Proof: for t < u,

cov(Xt ,Xu) = E[XtXu] = E

[
Et [XtXu]

]
= E

[
XtEt [Xu]

]
= 0

• The variance of Mt is

var(Mt) = var(M0+X1+X2+ · · ·+Xt) =
t∑

i=1

var(Xi ) = E

[
t∑

i=1

X 2
i

]
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Chain Rule of Ordinary Calculus

• Define y = f (x) for some continuously differentiable function f , so

dy = f ′(x)dx

• Now let x be a nonrandom continuously differentiable function of

time and define yt = f (xt). The chain rule gives us

dyt
dt

= f ′(xt)
dxt
dt

⇔ dyt = f ′(xt)dxt

• The fundamental theorem of calculus states that we can “sum” the

changes over an interval [0, t] to obtain

yt = y0 +

∫ t

0

f ′(xs)dxs .

Of course, we can substitute dxs = x ′s ds in this integral.
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Chain Rule from Multivariate Calculus

• Define y = f (t, x), so

dy =
∂f

∂t
dt +

∂f

∂x
dx

• Now let x be a nonrandom continuously differentiable function of

time and define yt = f (t, xt). The chain rule gives us

dy

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
⇔ dyt =

∂f

∂t
dt +

∂f

∂x
dxt

• This implies

yt = y0 +

∫ t

0

∂f (s, xs)

∂s
ds +

∫ t

0

∂f (s, xs)

∂x
dxs

Of course, we can substitute dxs = x ′s ds in this integral.
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Itô’s Formula

• Let f (t, x) be continuously differentiable in t and twice continuously

differentiable in x .

• Define Yt = f (t,Bt) for a Brownian motion B.

• Itô’s formula states that

dY =
∂f

∂t
dt +

1

2

∂2f

∂B2
dt +

∂f

∂B
dB

• Thus, Y is an Itô process with

∂f

∂t
+

1

2

∂2f

∂B2

as its drift and (∂f /∂B)dB as its stochastic part.

• Itô’s formula means that, for each t,

Yt = Y0 +

∫ t

0

(
∂f (s,Bs)

∂s
+

1

2

∂2f (s,Bs)

∂B2

)
ds +

∫ t

0

∂f (s,Bs)

∂B
dBs
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Itô’s Formula cont.

• Recall our notation (dB)2 = dt.

• In terms of this notation, Itô’s formula is

dY =
∂f

∂t
dt +

∂f

∂B
dB +

1

2

∂2f

∂B2
(dB)2
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Example of Itô’s Formula

• Let Yt = B2
t , so Yt = f (Bt) where f (x) = x2.

• Apply Itô’s formula. Using the notation (dB)2 = dt, we have

dY = f ′(Bt)dB +
1

2
f ′′(Bt) (dB)

2

= 2Bt dBt + (dB)2

• Compare this to discrete changes. Consider the increment

∆Y = Yu − Ys over an interval [s, u]. Set ∆B = Bu − Bs .

• We have

∆Y = B2
u − B2

s

= [Bs +∆B]2 − B2
s

= 2Bs∆B + (∆B)2
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Itô’s Formula for Functions of Itô Processes

• Let X be an Itô process: dX = α dt + θ dB.

• Recall our notation: (dt)2 = 0, (dt)(dB) = 0, (dB)2 = dt.

• Recall

(dX )2 = (α dt + θ dB)2 = θ2 dt

• Let f (t, x) be continuously differentiable in t and twice continuously

differentiable in x .

• Define Yt = f (t,Xt).

• Itô’s formula is:

dY =
∂f

∂t
dt +

∂f

∂X
dX +

1

2

∂2f

∂X 2
(dX )2

=
∂f

∂t
dt +

∂f

∂X
(α dt + θ dB) +

1

2

∂2f

∂X 2
θ2 dt
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GBM



Geometric Brownian Motion

• Suppose, for constants µ and σ, that

dS

S
= µdt + σ dB

• We will solve this like we solved for the price of the money market

account.

• Define Yt = log St . The process S is an Itô process, so we can apply

Itô’s formula to Y to obtain

d log S =
1

S
dS +

1

2
·
(
− 1

S2

)
(dS)2

= µdt + σ dB − 1

2
σ2 dt
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Geometric Brownian Motion cont.

• Summing the changes gives

log St = log S0 +

(
µ− 1

2
σ2

)
t + σBt

• Exponentiating both sides gives

St = S0e
µt−σ2t/2+σBt

• This is the solution of the equation

dS

S
= µdt + σ dB
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Multivariate



Covariation (Joint Variation)

• Consider a discrete partition s = t0 < t1 < t2 < · · · < tN = u of a

time interval [s, u].

• For any two functions of time x and y , consider the sum of products

of changes
N∑
i=1

∆xti∆yti ,

where ∆xti = xti − xti−1 and ∆yti = yti − yti−1 .

• The covariation (or joint variation) of x and y on the interval [s, u]

is defined as the limit of this sum as N → ∞ and the lengths

ti − ti−1 of the intervals go to zero.

• If x = y , then this is the same as the quadratic variation.

• If both functions are continuous and one is continuously

differentiable, then the covariation is zero.
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Covariation of Brownian Motions

• If B1 and B2 are Brownian motions, then there is a process ρ with

|ρt | ≤ 1 for all t, such that, with probability 1, the covariation of the

paths of B1 and B2 over any interval [s, u] equals∫ u

s

ρt dt

• The Brownian motions are independent if and only if ρ ≡ 0.

• We write (dB1)(dB2) = ρdt.

• Then we can “calculate” the covariation as the sum of products of

changes: ∫ u

s

(dB1t)(dB2t)
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Covariation of Itô Processes

• Consider two Itô processes dXi = αi dt + θi dBi .

• The covariation of X1 and X2 over any interval [s, u] is∫ u

s

(dX1t) (dX2t)

• Here,

(dX1t) (dX2t) = (α1t dt + θ1t dB1t)(α2t dt + θ2t dB1t)

= θ1tθ2t(dB1t)(dB2t)

= θ1tθ2tρt dt

where ρ is the correlation process of the two Brownian motions.

• We also call ρ the correlation process of the two Itô processes.
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General Itô’s Formula

• Consider n Itô processes dXi = αi dt + θi dBi .

• Suppose (t, x) 7→ f (t, x) : [0,∞)× Rn → R is continuously

differentiable in t and twice continuously differentiable in x .

• Define Yt = f (t,X1t , . . . ,Xnt).

• Then

dY =
∂f

∂t
dt +

n∑
i=1

∂f

∂Xi
dXi +

1

2

n∑
i=1

n∑
j=1

∂2f

∂Xi∂Xj
(dXi ) (dXj)

• For example, if n = 2, then

dY =
∂f

∂t
dt +

∂f

∂X1
dX1 +

∂f

∂X2
dX2

+
1

2

∂2f

∂X 2
1

(dX1)
2 +

1

2

∂2f

∂X 2
2

(dX2)
2 +

∂2f

∂X1∂X2
(dX1) (dX2)
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Product Rule (Integration by Parts)

• Suppose X1 and X2 are Itô processes and Yt = X1tX2t .

• To calculate dY , we apply Itô’s formula with n = 2 and

f (t, x1, x2) = x1x2.

• We obtain

dY = X1 dX2 + X2 dX1 + (dX1)(dX2)

BUSI 521/ECON 505, Spring 2024 36


	Preliminaries
	

	Brownian Motion
	

	Martingales
	

	Itô Integral
	

	Returns
	

	Itô's Formula
	

	GBM
	

	Multivariate
	


