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Preliminaries



Review: Discrete-Time Martingales

A martingale is a sequence of random variables Y such that
Ys = Es[Ye] for all s < t.

e Equivalently, E;[Y; — Ys] = 0.
e Consider any payoff at date v with value W; at date t. Then

1. The sequence MW, is a martingale (up to u).

2. The sequence
W,

X+ra)---(1+ra)

is a Q-martingale.

e This holds for any self-financing wealth process W, meaning that no
money is taken out or in after date 0 — e.g., a dividend-reinvested
asset price.
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Continuous-Time Model of a Stock Price

e Notation: S = stock price, B = Brownian motion, ;1 and o are

constants or stochastic processes.
e Stock price model:
ds

e ;1 dt = expected rate of return, c dB = risk

e Qur goal is to understand what equations like this mean and to learn
how to work with them.

e The first task is to explain Brownian motion.
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Stochastic Process

e A stochastic process X in continuous time is a collection of random
variables X; for t € [0, 00) or for t € [0, T].

The state of the world w determines the value X;(w) at each time ¢.

A stochastic process can be viewed as a random function of time

e For a given w, the function of time is called a path of the stochastic
process.
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Brownian Motion



Brownian Motion

e A Brownian motion is a continuous-time stochastic process B with
the property that, for any dates t < u, and conditional on
information at date t, the change B, — B; is normally distributed
with mean zero and variance u — t.

e Equivalently, B, is conditionally normally distributed with mean B;
and variance v — t. In particular, the distribution of B, — B; is the
same for any conditioning information and hence is independent of
conditioning information. This is expressed by saying that the
Brownian motion has independent increments.

e We can regard AB = B, — B; as noise that is unpredictable by any
date—t information. The starting value of a Brownian motion is
typically not important, because only the increments AB are usually
used to define the randomness in a model, so we can and will take
By =0.
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Brownian Motion and Information

e A Brownian motion with respect to some information might not be a
Brownian motion with respect to other information.

e For example, a stochastic process could be a Brownian motion for
some investors but not for better informed investors, who might be
able to predict the increments to some degree.

e It is part of the definition of a Brownian motion that the past values
Bs for s <t are part of the information at each date t.
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Continuous Nondifferentiable Paths

e The paths of a Brownian motion make many small up-and-down
movements with extremely high frequency, so that the limits
lims—:(B: — Bs)/(t — s) defining derivatives do not exist.

e With probability 1, a path of a Brownian motion is

e continuous
e almost everywhere nondifferentiable

e The name “Brownian motion” stems from the observations by the
botanist Robert Brown of the erratic behavior of particles suspended
in a fluid.
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adratic Variation of Brownian Paths

Let B be a Brownian motion. Consider a discrete partition
Ss=th<th<bhb<---<ty=u

of a time interval [s, u].
e Consider the sum of squared changes

N

Z(Bti - Bfi—1)2

i=1
in some state of the world.

e If we consider finer partitions (i.e., increase N) with the maximum
length t; — t;_; of the time intervals going to zero as N — oo, the
limit of the sum is called the quadratic variation of the path of B.

e The quadratic variation of the path of a Brownian motion over any
interval [s, u] is equal to u — s with probability 1.
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Quadratic Variation of Usual Functions of Time

e The quadratic variation of any continuously differentiable function is
zero.

e Consider, for example, a linear function of time: f; = at for some
constant a.

e Taking t; — t;_1 = At = (u—s)/N for each i, the sum of squared
changes over an interval [s, u] is

N N 5
2 5 s f(u—s 32(U—S)2
Z(ﬂ, - fti—l) = Z(QAI‘) = Na ( N ) = N -0
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Total Vari n of Brownian Paths

e Total variation is defined in the same way as quadratic variation but
with the squared changes replaced by the absolute values of the
changes.

e Brownian paths have infinite total variation (with probability 1).

e |n general, for continuous functions, finite total variation = zero
quadratic variation.
e So, nonzero quadratic variation = infinite total variation.

e Infinite total variation means that if we were to straighten out a
path of a Brownian motion to measure it, its length would be

infinite. This is true no matter how small the time period over which
we measure the path.
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Martingales



Continuous Martingales

e A martingale is a stochastic process X with the property that
E:[X.] = X; for each t < u (equivalently, E;[X, — X;] = 0).

e In discrete time, if M is an SDF process and W is a self-financing
wealth process, then MW is a martingale.

e A continuous martingale is a martingale for which all of the paths
are continuous (up to a null set).

e Every continuous martingale that is not constant has infinite total
variation.
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Levy’s Theorem

e Aa continuous martingale is a Brownian motion if and only if its
quadratic variation over each interval [s, u] equals u — s.

e Thus, if a stochastic process has (i) continuous paths, (ii)
conditionally mean-zero increments, and (iii) quadratic variation
over each interval equal to the length of the interval, then its
increments must also be

e (iv) independent of conditioning information and
e (v) normally distributed.

e It is possible to deform the time scale (speeding up or slowing down
the clock) to convert any continuous martingale into a Brownian
motion.

e Also, we can form continuous martingales from Brownian motions
via stochastic integrals.
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I1to Integral



Stochastic Integrals

If O is a stochastic process adapted to the information with respect to
which B is a Brownian motion, is jointly measurable in (t,w), and

,
/ 02 dt < oo
0

with probability 1, and if My is a constant, then we can define the
stochastic process

satisfies

t
l\/lt:l\/lo—i—/ 0s dBs
0

for t € [0, T]. This is called an Itd integral or stochastic integral.
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Approximating Stochastic Integrals

For each t, the stochastic integral can be approximated as (is a limit in
probability of)

N
Z 91‘171(85' - Bti—l)
=1
given discrete partitions
O=fH<thi<b< ---<ty=t

of the time interval [0, t] with the maximum length t; — t;_; of the time
intervals going to zero as N — co. Note that 6 is evaluated in this sum
at the beginning of each interval [t;_1, t;] over which the change in B is
computed.
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Differential Form

Given .
M; = /\/lo+/ 0. dBs
0
we write
th = 91_» dBt
or, more simply,
dM =60dB

We can define M from the formula dM = 6 dB and the initial condition
My by “summing” the changes dM as

t t
Mt:Mo+/dM5:/\/lo+/95st.
0 0
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I1to Process

The sum of an ordinary integral and a stochastic integral is called an It
process. Such a process has the form

t t
Ve = Y0—|—/ asds+/ 0s dBs,
0 0
which is also written as
dYt = Ot dt + 9,_» dBt

or, more simply, as
dY =adt+60dB

We recover Y from this differential form by “summing” the changes dY
over time. The process « is called the drift of Y.
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Returns




Asset Return

e Suppose that between dividend payments the price S of an asset
tisfi
satisfies s
< = pdt+odB

for a Brownian motion B and stochastic processes (or constants) u
and o.

e We interpret dS/S as the instantaneous rate of return of the asset
and pdt as the expected rate of return.

e The equation for S can be written equivalently as
dS = Sudt+ So dB.

e The real meaning is the “summed” version:

Su = 50 +/ St,l,tt dt"‘/ StO't dBt
0 0
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Money Market Account

Suppose there is an asset that is locally risk-free, meaning that its

price R satisfies

%:rdt

for some r (which can be a stochastic process).

This equation for R can be solved explicitly as

u
R, = Ryexp (/ rtdt) .
0

We interpret r; as the interest rate at date t for an investment
during the infinitesimal period (t,t + dt).

If the interest rate is constant, then R, = Rpe™, meaning that
interest is continuously compounded at the constant rate r.

We call r the instantaneous risk-free rate or the locally risk-free rate
or the short rate.
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Portfolio Return

e A portfolio of the asset with price S (the risky asset) and the money
market account is defined by the fraction m; of wealth invested in
the risky asset at each date t.

e If no funds are invested or withdrawn from the portfolio during a
time period [0, T] and the asset does not pay dividends during the
period, then the wealth process W satisfies

dw ds

W :(1—7r)rdt+7r?

e This is called the intertemporal budget constraint. It states that
wealth grows only from interest earned and from the return on the
risky asset.
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Intertemporal Budget Constraint

The intertemporal budget constraint with no labor income and no
consumption is

dw ds

=(1-m)rdt+rpdt+ rodB
=rdt+n(p—r)dt+7modB

We can also write it as
AW =rWdt +n(p— r)Wdt + e W dB

With labor income Y and consumption C (both as rate per unit time), it

is
dW =W dt +n(p — r)Wdt + reW dB + Ydt — Cdt
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Ito’'s Formula




Notation for Quadratic Variation

e Convenient notation: (dB)? = dt.
e The motivation comes from quadratic variation. Consider discrete
partitions
S=th<th<b<---<ty=u
of a time interval [s, u].

e With N — oo and the maximum length t; — t;_; of the time
intervals going to zero,

—>/ (dB)* = [ dt=u—s

S
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Quadratic Variation of a Stochastic Integral

The quadratic variation of a stochastic integral dM; = 0, dB;

over an interval [s, u] is

/su(d/\/lt)2 — /Su(@tdgt)2 - /Su(gt)z(dst)g _ /Suﬁfdt
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Quadratic Variation of an Itd Process

e More convenient notation: (dt)? =0, (dB)(dt) =

e The motivation for (dt)? = 0 is that the quadratic variation of a
continuously differentiable function of time is zero.

e The quadratic variation of an It6 process dX; = a; dt + 0; dB; over

an interval [s, u] is

/ (d)(f)2 :/ (Oétdt+9t dBt)2 :/ dBt / 92 dt
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Variance and Quadratic Variation in Discrete Time

e Suppose M is a martingale in discrete time. Define X to be the
changes in M:

Xi=M — My, Xo=My,— M, Xz=Mz— M,

e The process X is called a martingale difference series. It is serially
uncorrelated.

e Proof: for t < u,
cov(X;, X,) = E[X; X,] = E {Et[XtXu]] =JE {XtEt[Xu]] =)0)

e The variance of M; is

t
var(M;) = var(Mo + X1+ Xo +- - - + X;) = Zvar(X,-) =E

i=1

t
> X7
i=1
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Chain Rule of Ordinary Calculus

e Define y = f(x) for some continuously differentiable function f, so
dy = f/(x)dx
e Now let x be a nonrandom continuously differentiable function of
time and define y; = f(x;). The chain rule gives us

d)/t o dXt
ar (x) dt

e The fundamental theorem of calculus states that we can “sum” the

= d)/t = f/(Xt) dXt

changes over an interval [0, t] to obtain

t
}/t = _yO + / f/(Xs) dXS o
Jo
Of course, we can substitute dx; = x/ ds in this integral.
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Chain Rule from Multivariate Calculus

e Define y = f(t, x), so

of of
dy = 7o de + o dx

e Now let x be a nonrandom continuously differentiable function of
time and define y; = f(t, x;). The chain rule gives us
dy Of  Of dx of of

dt — at  ox dt
e This implies

‘ af(S,XS) ‘ 8f(S,X5)
)/t—}/o+/0 TdS+A des

Of course, we can substitute dxs = x. ds in this integral.
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I1to’s Formula

e Let 7(t,x) be continuously differentiable in t and twice continuously
differentiable in x.

e Define Y; = f(t, B;) for a Brownian motion B.

e |td's formula states that

of . 1PF  Of
dY_adt+2682 dt + == dB

e Thus, Y is an It6 process with

or 10
ot 20B2
as its drift and (0f /0B) dB as its stochastic part.

e |to's formula means that, for each t,

t(0f(s,B)  16Pf(s,B.) f (s
tho+/0< it O ) / B,
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Ito’s Formula cont.

e Recall our notation (dB)? = dt.

e In terms of this notation, Itd's formula is

of of 1 9%f 2
dYy = Edt+a§d8+§@(d8)
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Example of 1t6’s Formula

o Let Y; = B?, 50 Y; = f(B;) where f(x) = x2.
e Apply Itd's formula. Using the notation (dB)? = dt, we have
1
dY = f'(B;)dB + Ef”(Bt) (dB)?
== th dBt + (dB)2

e Compare this to discrete changes. Consider the increment
AY =Y, — Y; over an interval [s, u]. Set AB = B, — Bs.

e We have
AY =B} — B?
= [Bs + AB]? — B?
=2B,AB + (AB)?
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I1té’s Formula for Functions of I1td Processes

e Let X be an It6 process: dX = adt + 6dB.
Recall our notation: (dt)? =0, (dt)(dB) =0, (dB)? = dt.

e Recall

(dX)? = (adt + 0dB)* = 6 dt

Let f(t, x) be continuously differentiable in ¢ and twice continuously

differentiable in x.
e Define Y; = f(t, X;).

Itd's formula is:

of of 10%f .o,
Y = = dt + 5o dX + 5 5 (dX)

_of of 1 9%f

i ~r =Y " n2
=5 dt+aX( dt+9dB)+26X20 dt
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GBM




Geometric Brownian Motion

e Suppose, for constants 1 and o, that

% =pdt+odB

e We will solve this like we solved for the price of the money market
account.

e Define Y; =log S;. The process S is an Itd process, so we can apply
[td’'s formula to Y to obtain

1 1 1 )

1
=pdt+odB— 5a2dt
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Geometric Brownian Motion cont.

e Summing the changes gives
1,
log St = log So + | 1t — 5 t+oB;

e Exponentiating both sides gives

St _ Soeutfazt/Zﬁ»aBt
e This is the solution of the equation

% =updt+odB
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Multivariate




on (Joint Variati

e Consider a discrete partition s =tg < t; < tp < --- < ty =u of a
time interval [s, u].

e For any two functions of time x and y, consider the sum of products
of changes

N
Z AXt,' Ayt,' )
i=1

where Axy, = Xy, — X¢,_, and Ay, = Vi, — Ve._,-

e The covariation (or joint variation) of x and y on the interval [s, u]
is defined as the limit of this sum as N — oo and the lengths
t; — ti_1 of the intervals go to zero.

e If x =y, then this is the same as the quadratic variation.

e If both functions are continuous and one is continuously
differentiable, then the covariation is zero.
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Covariation of Brownian Motions

If By and B, are Brownian motions, then there is a process p with
|pt] <1 for all t, such that, with probability 1, the covariation of the

paths of B; and B, over any interval [s, u] equals

u
/ pedt
S

The Brownian motions are independent if and only if p = 0.
We write (dBy)(dB;) = pdt.

Then we can “calculate” the covariation as the sum of products of

changes:

/u(dBlt)(det)

S
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Covariation of 1td Processes

Consider two 1td processes dX; = «; dt + 0; dB;.

The covariation of X; and X, over any interval [s, u] is

/ (X0 (%)
e Here,

(dX]_t) (dth) = (()é]_t dt + 011— dB]_t)(Q2t dt —+ 021’ dB]t)
= 91t92t(d31t)(d52t)
= 01:02:p dt

where p is the correlation process of the two Brownian motions.

We also call p the correlation process of the two Itd processes.

BUSI 521/ECON 505, Spring 2024 34



General 1td6’s Formula

e Consider n It6 processes dX; = «; dt + 6; dB;.

Suppose (t, x) — f(t,x) : [0,00) x R” — R is continuously
differentiable in t and twice continuously differentiable in x.

[ ] Deﬁne Yt = f(t, X1t7'-'7Xnt)-
e Then
QIZ_:JZI 8X8X Xi) (dX)

e For example, if n = 2, then

of of of

dY = — dt + —dX dX.
ot T ax T ax,
1 0%f 1 0%f 0*f
2 (dX1)? 4+ 2= (dX0)? + ——— (dX X:
+2ax12 (@) + 3 axz (V) + gxax, (1) (4%)
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Product Rule (Integration by Parts)

e Suppose X; and X; are It processes and Y; = X1:Xo;.
e To calculate dY, we apply Itd's formula with n =2 and
f(l', X1, Xg) = X1X2.

e We obtain
dY = X1 dXo + Xp dX; + (dX1)(dX3)
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