Chapter 8: Dynamic Securities Markets

Kerry Back
BUSI 521/ECON 505
Spring 2024
Rice University

Assets and Returns

- Dates $t=0,1,2, \ldots$. No tildes anymore for random things. Information grows over time as random variables are observed.
- $D_{i t}=$ dividend of asset i at date t. Ex-dividend price $P_{i t}>0$.
- Return from t to $t+1$ is

$$
R_{i, t+1}:=\frac{P_{i, t+1}+D_{i, t+1}}{P_{i t}}
$$

- Risk-free return from t to $t+1$ is $R_{f, t+1}$. Known at t (so risk-free from t to $t+1$) but maybe not known until t (randomly evolving interest rates).

Iterated Expectations

- Let E_{t} denote expectation given information at date t.
- Assume information is nondecreasing over time.
- For any $s<t<u$ and random variable X_{u} known at date u,

$$
\mathrm{E}_{s}\left[X_{u}\right]=\mathrm{E}_{s}\left[\mathrm{E}_{t}\left[X_{u}\right]\right]
$$

SDFs

One-Period SDFs

- SDF at t for pricing at $t+1$ is a r.v. Z_{t+1} depending on date $t+1$ information such that

$$
\mathrm{E}_{t}\left[Z_{t+1} R_{i, t+1}\right]=1
$$

for all assets i.

- Equivalently, price at t of any portfolio payoff X_{t+1} at $t+1$ is

$$
\mathrm{E}_{t}\left[Z_{t+1} X_{t+1}\right]
$$

- With no uncertainty or with risk neutrality,

$$
Z_{t+1}=\frac{1}{R_{f, t+1}}:=\frac{1}{1+r_{f, t+1}}
$$

Two-Period SDFs

- How to price at $t-1$ a payoff at $t+1$?

Two-Period SDFs

- How to price at $t-1$ a payoff at $t+1$?
- Same as price at $t-1$ of enough dollars at t to buy the payoff. So, is price at $t-1$ of

$$
\mathrm{E}_{t}\left[Z_{t+1} X_{t+1}\right]
$$

Two-Period SDFs

- How to price at $t-1$ a payoff at $t+1$?
- Same as price at $t-1$ of enough dollars at t to buy the payoff. So, is price at $t-1$ of

$$
\mathrm{E}_{t}\left[Z_{t+1} X_{t+1}\right]
$$

- So price at $t-1$ is

$$
\mathrm{E}_{t-1}\left[Z_{t} \mathrm{E}_{t}\left[Z_{t+1} X_{t+1}\right]\right]=\mathrm{E}_{t-1}\left[\mathrm{E}_{t}\left[Z_{t} Z_{t+1} X_{t+1}\right]\right]=\mathrm{E}_{t-1}\left[Z_{t} Z_{t+1} X_{t+1}\right]
$$

- We're compounding discount factors.
- With no uncertainty, price is

$$
\frac{X_{t+1}}{\left(1+r_{f, t}\right)\left(1+r_{f, t+1}\right)}
$$

SDF Process

- Define M by compounding discount factorrs:

$$
M_{t}:=Z_{1} \times Z_{2} \times \cdots \times Z_{t}
$$

- Set $M_{0}=1$.
- Price at date 0 of a payoff X_{t} at date t is $\mathrm{E}\left[M_{t} X_{t}\right]$.

SDF Process

- Define M by compounding discount factorrs:

$$
M_{t}:=Z_{1} \times Z_{2} \times \cdots \times Z_{t}
$$

- Set $M_{0}=1$.
- Price at date 0 of a payoff X_{t} at date t is $\mathrm{E}\left[M_{t} X_{t}\right]$.
- Price at date $s<t$ of payoff X_{t} at date t is

$$
\mathrm{E}_{s}\left[Z_{s+1} \cdots Z_{t} X_{t}\right]=\mathrm{E}_{s}\left[\frac{Z_{1} \cdots Z_{t}}{Z_{1} \cdots Z_{s}} X_{t}\right]=\mathrm{E}_{s}\left[\frac{M_{t}}{M_{s}} X_{t}\right]
$$

Factor Model

Dynamic Factor Model

- From

$$
1=\mathrm{E}_{t}\left[\frac{M_{t+1}}{M_{t}} R_{i, t+1}\right]
$$

we get

$$
1=\frac{E_{t}\left[R_{i, t+1}\right]}{R_{f, t+1}}+\operatorname{cov}_{t}\left(\frac{M_{t+1}}{M_{t}}, R_{i, t+1}\right)
$$

- So

$$
\mathrm{E}_{t}\left[R_{i, t+1}\right]-R_{f, t+1}=-R_{f, t+1} \operatorname{cov}_{t}\left(\frac{M_{t+1}}{M_{t}}, R_{i, t+1}\right)
$$

Portfolio Choice

Portfolio Choice

- Stack returns into an n-vector R_{t+1}. One may be risk-free (return $=R_{f, t+1}$).
- Investor chooses consumption C_{t} and a portfolio $\pi_{t} \in \mathbb{R}^{n}$. $\iota^{\prime} \pi_{t}=1$. Labor income Y_{t}.
- Suppose investor seeks to maximize

$$
\sum_{t=0}^{\infty} \delta^{t} u\left(C_{t}\right)
$$

Wealth (actually financial wealth) W satisfies the intertemporal budget constraint

$$
W_{t+1}=\left(W_{t}-C_{t}\right) \pi_{t}^{\prime} R_{t+1}+Y_{t+1}
$$

Euler Equation

- A necessary condition for consumption/investment optimality is that, for all dates t and assets i,

$$
\mathrm{E}_{t}\left[\frac{\delta u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)} R_{i, t+1}\right]=1
$$

- This is called the Euler equation. It is derived by the same logic as in a single-period model.
- The Euler equation is equivalent to:

$$
M_{t}:=\frac{\delta^{t} u^{\prime}\left(C_{t}\right)}{u^{\prime}\left(C_{0}\right)}
$$

is an SDF process.

- The one-period SDFs are one-period marginal rates of substitution:

$$
\frac{M_{t+1}}{M_{t}}=\frac{\delta u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)}
$$

Equity Premium Puzzle

Representative Investor and SDF Process

- Let C denote aggregate consumption.
- Assume there is a representative investor with CRRA utility and risk aversion ρ.
- Then, the one-period SDF is

$$
\frac{M_{t+1}}{M_{t}}=\delta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\rho}
$$

- The SDF process is

$$
M_{t}=\delta^{t}\left(\frac{C_{t}}{C_{0}}\right)^{-\rho}
$$

Market Price-Dividend Ratio

- Define the market portfolio as the claim to future consumption.
- Consumption is then the dividend of the market portfolio. Assume consumption growth C_{t+1} / C_{t} is iid lognormal.
- The ex-dividend date-t price of the market portfolio is

$$
P_{t}:=\mathrm{E}_{t} \sum_{u=t+1}^{\infty} \frac{M_{u}}{M_{t}} C_{u}=\mathrm{E}_{t} \sum_{u=t+1}^{\infty} \delta^{u-t}\left(\frac{C_{u}}{C_{t}}\right)^{-\rho} C_{u}
$$

- So, the price-dividend ratio is

$$
\begin{aligned}
\frac{P_{t}}{C_{t}} & =\mathrm{E}_{t} \sum_{u=t+1}^{\infty} \delta^{u-t}\left(\frac{C_{u}}{C_{t}}\right)^{1-\rho} \\
& =\mathrm{E} \sum_{u=1}^{\infty} \delta^{u}\left(\frac{C_{u}}{C_{0}}\right)^{1-\rho}
\end{aligned}
$$

- Assume $\log C_{t+1}=\log C_{t}+\mu+\sigma \varepsilon_{t+1}$ for iid standard normals ε.
- Then

$$
\log C_{u}=\log C_{0}+u \mu+\sigma \sum_{n=1}^{u} \varepsilon_{n}
$$

- Hence,

$$
\begin{aligned}
\mathrm{E}\left[\left(\frac{C_{u}}{C_{0}}\right)^{1-\rho}\right] & =\mathrm{E}\left[\exp \left((1-\rho)\left\{u \mu+\sigma \sum_{n=1}^{u} \varepsilon_{n}\right\}\right)\right] \\
& =\exp \left((1-\rho) u \mu+\frac{1}{2}(1-\rho)^{2} u \sigma^{2}\right) \\
& =\left(\mathrm{e}^{(1-\rho) \mu+(1-\rho)^{2} \sigma^{2} / 2}\right)^{u}
\end{aligned}
$$

- So, the price-dividend ratio is

$$
\sum_{u=1}^{\infty}\left(\delta \mathrm{e}^{(1-\rho) \mu+(1-\rho)^{2} \sigma^{2} / 2}\right)^{u}=\frac{\nu_{1}}{1-\nu_{1}}
$$

where

$$
\nu_{1}=\delta \mathrm{E}\left[\left(\frac{C_{1}}{C_{0}}\right)^{1-\rho}\right]=\delta \mathrm{e}^{(1-\rho) \mu+(1-\rho)^{2} \sigma^{2} / 2}
$$

provided $\nu_{1}<1$.

- This is the same ν_{1} we saw in Chapter 7.
- Everything else—risk-free return, expected market return, log equity premium, equity premium puzzle-is exactly the same as in Chapter 7.

Risk-Neutral Probability

Risk-Neutral Probability

- Consider an arbitrary finite (possibly large) horizon T.
- Consider an event A that can be distinguished by date T (at date T, you know whether A happened or not).
- Define

$$
Q(A)=E\left[R_{f 1} \cdots R_{f T} M_{T} 1_{A}\right]
$$

- Then Q is a probability measure.
- Define E^{*} as expectation with respect to Q. Then for all assets i and dates t,

$$
\mathrm{E}_{t}^{*}\left[R_{i, t+1}\right]=R_{f, t+1}
$$

- And, the price at t of a payoff X_{t+1} at date $t+1$ is

$$
\frac{\mathrm{E}_{t}^{*}\left[X_{t+1}\right]}{1+r_{f, t+1}}
$$

Martingales

Martingales

- A martingale is a sequence of random variables Y such that $Y_{s}=\mathrm{E}_{s}\left[Y_{t}\right]$ for all $s<t$.
- Equivalently, $E_{s}\left[Y_{t}-Y_{s}\right]=0$.
- Consider any payoff at date u with value V_{t} at date t. Then

1. The sequence $M_{t} V_{t}$ is a martingale (up to u).
2. The sequence

$$
\frac{V_{t}}{\left(1+r_{f 1}\right) \cdots\left(1+r_{f t}\right)}
$$

is a Q-martingale.

Testing

Testing Conditional Models

- Suppose we have a model for an SDF. Call the model value \hat{M}. We want to test whether

$$
(\forall t, i) \quad E_{t}\left[\frac{\hat{M}_{t+1}}{\hat{M}_{t}}\left(R_{i, t+1}-R_{f, t+1}\right)\right]=0
$$

- Let I_{t} be any variable observed at t. Multiply by I_{t} to get:

$$
(\forall t, i) \quad \mathrm{E}_{t}\left[I_{t} \frac{\hat{M}_{t+1}}{\hat{M}_{t}}\left(R_{i, t+1}-R_{f, t+1}\right)\right]=0
$$

- Now use the law of iterated expectations to obtain

$$
(\forall t, i) \quad \mathrm{E}\left[I_{t} \frac{\hat{M}_{t+1}}{\hat{M}_{t}}\left(R_{i, t+1}-R_{f, t+1}\right)\right]
$$

- The conditional model (\star) implies the unconditional moment condition ($* *$) for every instrument I. If we reject the unconditional moment conditions, then we reject the model.

