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Review: First-Order Condition

• Assets 1, . . . , n (including risk-free asset). Choose θ1, . . . , θn to

max E

[
u

(
n∑

i=1

θi x̃i

)]
subject to

n∑
i=1

piθi = w0 .

• Lagrangean:

E

[
u

(
n∑

i=1

θi x̃i

)]
− λ

(
n∑

i=1

piθi − w0

)

• FOC:

(∀ i) E

[
u′

(
n∑

i=1

θi x̃i

)
x̃i

]
= λpi

• Equivalently,

(∀ i) E

[
u′
(∑n

i=1 θi x̃i
)

λ
x̃i

]
= pi
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Stochastic Discount Factor

• Definition: A stochastic discount factor (SDF) is any random

variable m̃ such that

(∀ i) E [m̃x̃i ] = pi

• Or, writing in terms of returns: R̃i = x̃i/pi ,

(∀ i) E
[
m̃R̃i

]
= 1
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Risk-Free Asset

• If there is a risk-free asset and m̃ is an SDF, then

E[m̃Rf ] = 1 ⇒ E[m̃] =
1

Rf

• Recall that with risk-neutrality, m = 1/Rf .

• But, with risk aversion, an SDF is stochastic.
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Marginal Utility is Proportional to an SDF

• Given the definition of an SDF, we can describe the FOC as:

marginal utility is proportional to an SDF; i.e., u′(w̃∗) = λm̃.

• If there is a risk-free asset, then E[u′(w̃∗)] = λE[m̃] = λ/Rf .

• So, λ = Rf E[u
′(w̃∗)] and

m̃ =
1

Rf
· u′(w̃∗)

E[u′(w̃∗)]

• Risk neutrality ⇒ u(w) = a+ bw ⇒

u′(w̃∗)

E[u′(w̃∗)]
=

b

b
= 1 ⇒ m =

1

Rf
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Finite State Example



Example: Finite States

• Assume there are k < ∞ states of the world. We can regard any

random variable as a k vector.

• The definition of an SDF m ∈ Rk is that for each asset payoff

xi ∈ Rk with price pi we have

pi =
k∑

j=1

mjxij probj
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State Prices

• We can set qj = mj probj to obtain

pi =
k∑

j=1

xijqj

• Definition: An Arrow security is an asset that pays a unit of

consumption in a particular state and zero in all other states; i.e.,

x = (0 · · · 0 1 0 · · · 0)⊤.
• The price p of an Arrow security equals the q for the state in which

it pays 1. The q’s are also called state prices.
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Example: Equally Probable States

• Suppose all states are equally probable.

• Assume the FOC holds, so m̃ = u′(w̃∗)/λ is an SDF.

• What can we say about state prices? Which states are the most

expensive and which are the least expensive?
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CARA-Normal Example



CARA Utility

• Suppose there is a CARA investor u(w) = −e−αw .

• The FOC gives us

m̃ =
1

Rf
· u′(w̃∗)

E[u′(w̃∗)]
=

1

Rf
· e−αw̃∗

E[e−αw̃∗ ]
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Normal Distributions

• Suppose the asset payoffs x̃i are joint normally distributed.

• w̃∗ is a linear combination of the x̃i , so it is joint normal with the x̃i .

• The price of each asset is

pi = E[m̃x̃i ] =
1

Rf
· E[e

−αw̃∗
x̃i ]

E[e−αw̃∗ ]

• Can we calculate this?
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Step 1: Project x̃i on w̃ ∗

• Drop the i subscript and the ∗ on w̃∗.

• Setting b = cov(x̃ , w̃)/ var(w̃) and a = E[x̃ ]− bE[w̃ ], we have

x̃ = a+ bw̃ + ẽ

where ẽ has a zero mean, and ẽ and w̃ are uncorrelated (easy to

check from definitions) and hence independent (by normality).

• Thus, E[e−αw̃ ẽ] = 0 and

E[e−αw̃ x̃ ] = aE[e−αw̃ ] + bE[w̃e−αw̃ ]

p =
1

Rf

{
a+ b

E[w̃e−αw̃ ]

E[e−αw̃ ]

}
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Step 2: Integrate by Parts

• Integrate by parts (using the fact that for the standard normal

density f , we have xf (x) = −f ′(x)) or look up in a table of integrals

that

E[w̃e−αw̃ ] = (µw − ασ2
w )E[e

−αw̃ ]

• We end up with

p =
a+ bµw − αbσ2

w

Rf

• We have E[x̃ ] = a+ bµw and cov(x̃ , w̃) = bσ2
w , so

p =
E[x̃ ]− α cov(x̃ , w̃)

Rf

BUSI 521/ECON 505, Spring 2024 11



CRRA Example



CRRA Utility

• Suppose there is a CRRA investor: u(w) = w1−ρ/(1− ρ).

• The FOC gives us

m̃ =
1

Rf
· u′(w̃∗)

E[u′(w̃∗)]
=

1

Rf
· (w̃∗)−ρ

E[(w̃∗)−ρ]

• The investor’s portfolio return is R̃∗
p := w̃∗/w0, so tw∗ = w0R̃

∗
p , and

we obtain

m̃ =
1

Rf
·

(R̃∗
p )

−ρ

E[(R̃∗
p )

−ρ]

• More in Chapter 7.
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Finite States and Algebra of

SDFs



Finite State Model

• n assets and k states. X = n× k matrix of asset payoffs. Each asset

is a row.

• Vector of asset prices is p ∈ Rn

• Portfolio payoff is X ′θ ∈ Rk for θ ∈ Rn. We call {X ′θ | θ ∈ Rn} the

span of the assets.

• State price vector is q ∈ Rk such that Xq = p

• SDF is a vector of state prices divided by probabilities
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When Does a State Price Vector Exist?

• Assume that if there are two ways of getting the same thing, then

they cost the same (Law of One Price):

X ′θ = X ′θ̂ ⇒ p′θ = p′θ̂

• Equivalently, a zero-payoff portfolio must have a zero cost:

X ′θ = 0 ⇒ p′θ = 0

• Then an SDF exists. Proof: if everything orthogonal to the columns

of X is also orthogonal to p, then p must be a linear combination of

the columns of X . This means there exists q such that Xq = p.
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How Many State Price Vectors Are There?

• If q is any state price vector and Xb = 0 then q + b is a state price

vector. In fact, all state price vectors are q + b where Xb = 0.

• Proof: Let q̂ be another state price vector and define b = q̂ − q.

• The dimension of the set of state price vectors is the dimension of

the null space of X .

• There is a unique state price vector if and only if the null space of X

is {0}. This is equivalent to the rank of X being k.

• Example: n = k and X nonsingular implies q = X−1p.
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Complete Markets

• We say markets are complete if the span of the assets is all of Rk .

• Complete markets ⇒ uniqueness of the state price vector.
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Example

• Two equally probable states of the world.

• Risk-free asset with return Rf = 1.1. Can take its price to be 1 and

its payoff x to be (1.1, 1.1).

• Single risky asset. Price is 100 and payoffs are x = (120, 90).

• So,

p =

(
1

100

)
and X =

(
1.1 1.1

120 190

)
• State price vector solves Xq = p, meaning

1.1q1 + 1.1q1 = 1

120q1 + 90q2 = 100

• SDF is m1 = 2q1, m2 = 2q2.
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Another Example

• Two equally probable states. No risk-free asset.

• One risky asset with price p = 3 and payoffs x = (4, 2).

• State price vector is any q such that 4q1 + 2q2 = 3.

• SDF is m1 = 2q1, m2 = 2q2, so any m such that 2m1 +m2 = 3.
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• The span of the assets is the set {(4θ, 2θ) | θ ∈ R} and is shown as

the solid line.

• The set of SDFs is the dotted line. The intersection of the set of

SDFs with the span of the assets is the unique SDF in the span of

the assets. Call it mp (p for projection).

• All SDFs are m = mp + y where 4y1 + 2y2 = 0.
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Formulas for Prices and

Expected Returns



Risk Premia as Covariances

• Because cov(x̃ , ỹ) = E[x̃ ỹ ]− E[x̃ ]E[ỹ ],

1 = E[m̃R̃] = cov(m̃, R̃) + E[m̃]E[R̃]

• Rearrange to obtain

E[R̃] =
1

E[m̃]
− 1

E[m̃]
cov(m̃, R̃)

• Thus, expected asset returns depend on covariances with an SDF.

• If there is a risk-free asset, then Rf = 1/E[m̃]. So,

E[R̃]− Rf = −Rf cov(m̃, R̃)
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Risk-Adjusted Expected Value

• If there is a risk-free asset, then

p = E[m̃x̃ ] = E[m̃]E[x̃ ] + cov(m̃, x̃) =
E[x̃ ] + Rf cov(m̃, x̃)

Rf

• So, we can adjust the expected payoff for risk and then discount at

the risk-free rate.
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Risk-Adjusted Discount Rate

• Also,

E[R̃]− Rf = −Rf cov(m̃, R̃) ⇒ E[x̃/p] = −Rf cov(m̃, R̃)

⇒ E[x̃ ]− Rf = p
[
Rf − Rf cov(m̃, R̃)

]
⇒ p =

E[x̃ ]

Rf − Rf cov(m̃, R̃)

• So we can discount the expected payoff at a risk-adjusted rate.
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Risk-Adjusted Probabilities

• In the finite-state case,

pi =
k∑

j=1

mjxij probj

• Define

prob∗j =
mj probj∑
j mj probj

= Rfmj probj

• Assuming m > 0, the prob∗j are positive, and they sum to 1. So, we

can call them probabilities.

• Because mj probj = prob∗j /Rf , we have

pi =
k∑

j=1

mjxij probj =

∑k
j=1 xij prob

∗
j

Rf
:=

E∗[x̃ ]

Rf

• So, we can price by taking the expectation with respect to the prob∗j
and discounting at the risk-free rate. Consequently, the prob∗j are

called risk-neutral probabilities.
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Example

• Suppose the states are equally probable (under the actual = physical

probability) and the FOC holds.

• Which states have higher risk-neutral probabilities?
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General Definition of Risk-Neutral Probability

• For an event A, set 1A = indicator function, meaning 1A(ω) = 1 if

ω ∈ A and 1A(ω) = 0 otherwise.

• Given an SDF m̃, define

Q(A) =
E[m̃1A]

E[m̃]
= Rf E[m̃1A]

• Then, Q is a probability (measure):

• Q(A) ≥ 0, Q(∅) = 0,

• Q(Ω) = 1, and

• Q of the union of a sequence of disjoint events is the sum of Q of

the events.

BUSI 521/ECON 505, Spring 2024 25



Risk-Neutral Expectation

• Let E∗ denote expectation with respect to Q. Note Q(A) = E∗[1A]

for all events A.

• So, the definition of Q implies

(∀A) E∗[1A] = Rf E[m̃1A]

• This generalizes as

(∀ x̃) E∗[x̃ ] = Rf E[m̃x̃ ]

• It follows that prices are risk-neutral expected payoffs discounted at

the risk-free rate, and risk-neutral expected returns equal the

risk-free return:

p = E[m̃x̃ ] =
E∗[x̃ ]

Rf
⇒ E∗[ldeR] ≡ E

[
x̃

p

]
= Rf
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