Chapter 2: Portfolio Choice

Kerry Back
BUSI 521/ECON 505
Spring 2024
Rice University

Simplest Problem

- Single risky asset, price p per share at date 0 , price \tilde{x} per share at date 1.
- Risk-free asset with interest rate r_{f}.
- Investor has w_{0} to invest. Allocates between risk-free and risky assets.
- Let $\theta=$ number of shares of risky asset. Then $w_{0}-p \theta$ is invested risk-free (this could be negative, meaning borrowing).
- θ is chosen to maximize

$$
\mathrm{E}\left[u\left(\theta \tilde{x}+\left(w_{0}-p \theta\right)\left(1+r_{f}\right)\right)\right]
$$

- FOC is

$$
\mathrm{E}\left[u^{\prime}\left(\theta^{*} \tilde{x}+\left(w_{0}-p \theta^{*}\right)\left(1+r_{f}\right)\right)\left\{\tilde{x}-p\left(1+r_{f}\right)\right\}\right]=0
$$

More on the FOC

- Date-1 wealth is

$$
\tilde{w}^{*}:=\theta^{*} \tilde{x}+\left(w_{0}-p \theta^{*}\right)\left(1+r_{f}\right)
$$

- Divide the FOC by p. Set $\widetilde{\mathbf{R}}=\tilde{x} / p$. This is the (gross) return on the risky asset, meaning $1+$ rate of return.
- Set $R_{f}=1+r_{f}$. This is the (gross) risk-free return.
- The FOC is

$$
\mathrm{E}\left[u^{\prime}\left(\tilde{w}^{*}\right)\left\{\widetilde{\mathbf{R}}-R_{f}\right\}\right]=0
$$

More on the FOC

- Date-1 wealth is

$$
\tilde{w}^{*}:=\theta^{*} \tilde{x}+\left(w_{0}-p \theta^{*}\right)\left(1+r_{f}\right)
$$

- Divide the FOC by p. Set $\widetilde{\mathbf{R}}=\tilde{x} / p$. This is the (gross) return on the risky asset, meaning $1+$ rate of return.
- Set $R_{f}=1+r_{f}$. This is the (gross) risk-free return.
- The FOC is

$$
\mathrm{E}\left[u^{\prime}\left(\tilde{w}^{*}\right)\left\{\widetilde{\mathbf{R}}-R_{f}\right\}\right]=0
$$

- In words, marginal utility at the optimum is orthogonal to the excess return.

Preview of Chapter 3

- Set $\tilde{m}=u^{\prime}\left(\tilde{w}^{*}\right)$. The FOC is $\mathrm{E}\left[\tilde{m}\left(\tilde{\mathbf{R}}-R_{f}\right)\right]=0$.
- By the definition of covariance,

$$
\mathrm{E}\left[\tilde{m}\left(\widetilde{\mathbf{R}}-R_{f}\right)\right]=\mathrm{E}[\tilde{m}] \mathrm{E}\left[\widetilde{\mathbf{R}}-R_{f}\right]+\operatorname{cov}\left(\tilde{m}, \widetilde{\mathbf{R}}-R_{f}\right)
$$

- So, the risk premium is

$$
\mathrm{E}\left[\widetilde{\mathbf{R}}-R_{f}\right]=-\frac{1}{\mathrm{E}[\tilde{m}]} \operatorname{cov}(\tilde{m}, \widetilde{\mathbf{R}})
$$

- What sign should the covariance with marginal utility have?

Notation

- Single consumption good at each of two dates 0 and 1
- Date-0 wealth w_{0} (in units of consumption good)
- Assets
- Assets $i=1, \ldots, n$
- Date-0 prices p_{i} (in units of consumption good)
- Date-1 payoffs \tilde{x}_{i} (in units of consumption good)
- Returns
- Returns $\widetilde{R}_{i}=\tilde{x}_{i} / p_{i}$ (assuming ${\underset{\sim}{r}}_{i}>0)$
- Rates of return $\left(\tilde{x}-p_{i}\right) / p_{i}=\widetilde{R}_{i}-1$
- If there is a risk-free asset (\tilde{x} constant) then return is R_{f}
- Portfolios
- $\theta_{i}=$ number of shares held in portfolio
- $\phi_{i}=\theta_{i} p_{i}=$ units of consumption good invested
- $\pi_{i}=\theta_{i} p_{i} / w_{0}=$ fraction of wealth invested

Portfolio Choice Problem

- Choose $\theta_{1}, \ldots, \theta_{n}$ to

$$
\max \mathrm{E}\left[u\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right)\right] \quad \text { subject to } \quad \sum_{i=1}^{n} p_{i} \theta_{i}=w_{0} .
$$

- Choose $\phi_{1}, \ldots, \phi_{n}$ to

$$
\max \mathrm{E}\left[u\left(\sum_{i=1}^{n} \phi_{i} \widetilde{R}_{i}\right)\right] \quad \text { subject to } \quad \sum_{i=1}^{n} \phi_{i}=w_{0}
$$

- Choose π_{1}, \ldots, π_{n} to

$$
\max \mathrm{E}\left[u\left(w_{0} \sum_{i=1}^{n} \pi_{i} \widetilde{R}_{i}\right)\right] \quad \text { subject to } \quad \sum_{i=1}^{n} \pi_{i}=1
$$

Comments

- Short sales are allowed $\left(\theta_{i}<0\right)$
- There are no margin requirements.
- In the U.S. stock market, an investor with $\$ 100$ cash can only buy \$200 of stock (borrowing \$100).
- In our formulation, there are no limits on borrowing, except that $\sum \theta_{i} \tilde{x}_{i}$ must be in the domain of $u(\cdot)$-for example, positive if $u=\log$.
- In real markets, collateral (margin) also has to be posted against short sales, but we do not require that in our formulation.
- Here, we take date-0 consumption and investment as given and optimize over the portfolio. We can also optimize over date-0 consumption and investment.
- We can sometimes allow for other non-portfolio income \tilde{y} at date-1 (for example, labor income).

First-Order Condition

- Lagrangean:

$$
\mathrm{E}\left[u\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right)\right]-\lambda\left(\sum_{i=1}^{n} p_{i} \theta_{i}-w_{0}\right)
$$

- Assume interior optimum and assume can interchange differentiation and expectation to obtain

$$
\text { (} \forall i) \quad \mathrm{E}\left[u^{\prime}\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right) \tilde{x}_{i}\right]=\lambda p_{i}
$$

- If $p_{i}>0$,

$$
\mathrm{E}\left[u^{\prime}\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right) \widetilde{R}_{i}\right]=\lambda
$$

First-Order Condition cont.

- If $p_{i}>0$ and $p_{j}>0$,

$$
\mathrm{E}\left[u^{\prime}\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right)\left(\widetilde{R}_{i}-\widetilde{R}_{j}\right)\right]=0
$$

- In words: marginal utility at the optimal wealth is orthogonal to excess returns.
- A return is the payoff of a unit-cost portfolio.
- An excess return is the payoff of a zero-cost portfolio (for example, a difference of returns).
- Why? Investing a little less in asset j and a little more in asset i (or the reverse) cannot increase expected utility at the optimum.

Some Results for One Risky

 Asset
Go Long if Risk Premium is Positive

- Let $\phi=$ amount invested in risky asset, so $w_{0}-\phi$ is invested in risk-free asset. Let $\mu=\mathrm{E}[\widetilde{R}]$ and $\sigma^{2}=\operatorname{var}(\widetilde{R})$.
- Date-1 wealth is

$$
\tilde{w}=\left(w_{0}-\phi\right) R_{f}+\phi \widetilde{R}=w_{0} R_{f}+\phi\left(\widetilde{R}-R_{f}\right)
$$

- We will show: $\mu>R_{f} \Rightarrow \phi^{*}>0$ (by symmetry, $\mu<R_{f} \Rightarrow \phi^{*}<0$).

Proof

We want to compare $\mathrm{E}\left[u\left(w_{0} R_{f}+\phi\left(\widetilde{R}-R_{f}\right)\right]\right.$ to $u\left(w_{0} R_{f}\right)$.
Define $\bar{w}=w_{0} R_{f}+\phi\left(\mu-R_{f}\right)$ and $\tilde{\varepsilon}=\phi(\widetilde{R}-\mu)$, so

$$
w_{0} R_{f}+\phi\left(\widetilde{R}-R_{f}\right)=\bar{w}+\tilde{\varepsilon} .
$$

Define π by

$$
u(\bar{w}-\pi)=\mathrm{E}[u(\bar{w}+\tilde{\varepsilon})] .
$$

The variance of $\tilde{\varepsilon}$ is $\phi^{2} \sigma^{2}$, so by second-order risk aversion,

$$
\pi \approx \frac{1}{2} \alpha(\bar{w}) \phi^{2} \sigma^{2}<\left(\mu-R_{f}\right) \phi
$$

when $\phi>0$ and small, so

$$
u(\bar{w}-\pi)>u\left(\bar{w}-\left(\mu-R_{f}\right) \phi\right)=u\left(w_{0} R_{f}\right)
$$

DARA Implies Risky Asset is a Normal Good

- Normal good: demand rises when income (wealth) rises. Inferior: demand falls when income (wealth) rises.
- A single risky asset with $\mu>R_{f}$ is a normal good if the investor has decreasing absolute risk aversion.
- Proof: The FOC is

$$
\mathrm{E}\left[u^{\prime}(\tilde{w})\left(\widetilde{R}-R_{f}\right)\right]=0
$$

Differentiate it:

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} w_{0}} \mathrm{E}\left[u^{\prime}\left(w_{0} R_{f}+\phi\left(\widetilde{R}-R_{f}\right)\right)\left(\widetilde{R}-R_{f}\right)\right] \\
& =\mathrm{E}\left[u^{\prime \prime}(\tilde{w})\left\{R_{f}+\phi^{\prime}\left(w_{0}\right)\left(\widetilde{R}-R_{f}\right)\right\}\left(\widetilde{R}-R_{f}\right)\right]
\end{aligned}
$$

Rearrange as

$$
\phi^{\prime}\left(w_{0}\right)=-\frac{R_{f} \mathrm{E}\left[u^{\prime \prime}(\tilde{w})\left(\widetilde{R}-R_{f}\right)\right]}{\mathrm{E}\left[u^{\prime \prime}(\tilde{w})\left(\widetilde{R}-R_{f}\right)^{2}\right]} .
$$

Can show: DARA $\Rightarrow \phi^{\prime}>0$.

CARA-Normal with Single Risky Asset

Assume CARA utility $\mathrm{E}\left[-\mathrm{e}^{-\alpha \tilde{w}}\right]$. Assume $\widetilde{R} \sim$ normal (μ, σ). Then \tilde{w} is normally distributed.

Recall: If \tilde{x} is normally distributed with mean μ_{x} and std $\operatorname{dev} \sigma_{x}$, then

$$
\mathrm{E}\left[\mathrm{e}^{\tilde{x}}\right]=\mathrm{e}^{\mu_{x}+\sigma_{x}^{2} / 2}
$$

Given an investment ϕ in the risky asset, $-\alpha \tilde{w}$ is normal with mean $-\alpha w_{0} R_{f}-\alpha \phi\left(\mu-R_{f}\right)$ and std $\operatorname{dev} \alpha \phi \sigma$. Hence,

$$
\mathrm{E}\left[-\mathrm{e}^{-\alpha \tilde{\mathrm{w}}}\right]=-\mathrm{e}^{-\alpha\left[w_{0} R_{f}+\phi\left(\mu-R_{f}\right)-\alpha \phi^{2} \sigma^{2} / 2\right]}
$$

Thus,

$$
w_{0} R_{f}+\phi\left(\mu-R_{f}\right)-\alpha \phi^{2} \sigma^{2} / 2
$$

is the certainty equivalent (mean minus one-half risk aversion times variance).

CARA-Normal cont.

Optimal portfolio maximizes the certainty equivalent. Therefore, the optimum is

$$
\phi^{*}=\frac{\mu-R_{f}}{\alpha \sigma^{2}}
$$

The optimal fraction of wealth to invest is

$$
\pi^{*}=\frac{\mu-R_{f}}{\left(\alpha w_{0}\right) \sigma^{2}}
$$

Usually assume αw_{0} is between 1 and 10 .

Multiple Risky Assets

Portfolio Mean and Variance

- $\widetilde{\mathbf{R}}=n$-vector of risky asset returns
- $\mu=n$-vector of expected returns
- $\phi=n$-vector of investments in consumption good units
- $\pi=\left(1 / w_{0}\right) \phi$
- $\iota=n$-vector of 1 's
- $\Sigma=n \times n$ covariance matrix, $\Sigma_{i j}=\operatorname{cov}\left(\widetilde{R}_{i}, \widetilde{R}_{j}\right)$

$$
\Sigma=\mathrm{E}\left[(\widetilde{R}-\mu)(\widetilde{R}-\mu)^{\prime}\right]
$$

- date-1 wealth $\tilde{w}=w_{0} R_{f}+\phi^{\prime}\left(\tilde{\mathbf{R}}-R_{f} \iota\right)$
- expected wealth $\bar{w}=w_{0} R_{f}+\phi^{\prime}\left(\mu-R_{f} \iota\right)$
- variance of wealth $=\phi^{\prime} \Sigma \phi$. Proof:

$$
\mathrm{E}\left[(\tilde{w}-\bar{w})^{2}\right]=\mathrm{E}\left[\left\{\phi^{\prime}(\widetilde{\mathbf{R}}-\mu)\right\}^{2}\right]=\mathrm{E}\left[\phi^{\prime}(\widetilde{R}-\mu)(\widetilde{R}-\mu)^{\prime} \phi\right]=\phi^{\prime} \Sigma \phi
$$

Diversification

- Portfolio variance is

$$
\pi^{\prime} \sum \pi=\sum_{i=1}^{n} \pi_{i}^{2} \operatorname{var}\left(\widetilde{R}_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \pi_{i} \pi_{j} \operatorname{cov}\left(\widetilde{R}_{i}, \widetilde{R}_{j}\right)
$$

- We can generally make $\sum_{i=1}^{n} \pi_{i}^{2} \operatorname{var}\left(\widetilde{R}_{i}\right)$ small by diversifying, if there are many assets.
- Suppose for example that the risky assets are uncorrelated and have the same variance $\sigma^{2}\left(\Sigma=\sigma^{2} I\right)$. Then

$$
\pi^{\prime} \Sigma \pi=\sigma^{2} \sum_{i=1}^{n} \pi_{i}^{2}
$$

Among portfolios fully invested in risky assets (π_{i} sum to 1), this variance is minimized at $\pi_{i}=1 / n$ and

$$
\pi^{\prime} \Sigma \pi=\sigma^{2} \sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2}=\frac{\sigma^{2}}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

CARA-Normal with Multiple Risky Assets

- Certainty equivalent is mean minus one-half risk aversion times variance:

$$
w_{0} R_{f}+\phi^{\prime}\left(\mu-R_{f} \iota\right)-\frac{1}{2} \alpha \phi^{\prime} \Sigma \phi
$$

- FOC is

$$
\mu-R_{f} \iota-\alpha \Sigma \phi=0 .
$$

- Optimum is

$$
\phi^{*}=\frac{1}{\alpha} \Sigma^{-1}\left(\mu-R_{f} \iota\right)
$$

Note no wealth effects.

- Similar form to single risky asset case. Optimum investment in each asset depends on its covariances with other assets unless Σ is diagonal.

Wealth Expansion Paths

Portfolio Return

- With a risk-free asset, date-1 wealth is

$$
\sum_{i} \phi \widetilde{\mathbf{R}}_{i}+\left(w_{0}-\sum_{i} \phi_{i}\right) R_{f}
$$

- Divide by w_{0} and write $\pi_{i}=\phi_{i} / w_{0}$.
- Date-1 wealth is

$$
w_{0}\left[\sum_{i} \pi \widetilde{\mathbf{R}}_{i}+\left(1-\sum_{i} \pi_{i}\right) R_{f}\right]:=w_{0} \widetilde{\mathbf{R}}_{p}
$$

- In words, initial wealth times the (gross) portfolio return.

How does a Log Utility Investor's Portfolio Depend on Wealth?

- Utility is

$$
\log \left(w_{0} \widetilde{\mathbf{R}}_{p}\right)=\log w_{0}+\log \widetilde{\mathbf{R}}_{p}=\log w_{0}+\log \left(\sum_{i} \pi \widetilde{\mathbf{R}}_{i}+\left(1-\sum_{i} \pi_{i}\right) R_{f}\right)
$$

- The optimal portfolio maximizes expected log of portfolio return and is independent of initial wealth.
- Optimal dollar investments are proportional to initial wealth:

$$
\phi_{i}^{*}=w_{0} \pi_{i}^{*} .
$$

- Optimal shares are also proportional to initial wealth: $\theta_{i}^{*}=\phi_{i}^{*} / p_{i}=w_{0} \pi_{i}^{*} / p_{i}$.

Power Utility

- Utility is

$$
\frac{1}{1-\rho}\left(w_{0} \widetilde{\mathbf{R}}_{\rho}\right)^{1-\rho}=w_{0}^{1-\rho} \times \frac{1}{1-\rho} \widetilde{\mathbf{R}}_{p}^{1-\rho}
$$

- So $w_{0}^{1-\rho}$ is a positive constant that multiplies the expected utility of the portfolio return.
- Optimal portfolio π^{*} maximizes expected utility of portfolio return and is independent of initial wealth.
- Optimal dollar investments are proportional to initial wealth:

$$
\phi_{i}^{*}=w_{0} \pi_{i}^{*} .
$$

- Optimal shares are also proportional to initial wealth: $\theta_{i}^{*}=\phi_{i}^{*} / p_{i}=w_{0} \pi_{i}^{*} / p_{i}$.

CARA Utility

- Stick with $\$$ investments. Date- 1 wealth is

$$
\sum_{i} \phi \widetilde{\mathbf{R}}_{i}+\left(w_{0}-\sum_{i} \phi_{i}\right) R_{f}=w_{0} R_{f}+\phi^{\prime}\left(\widetilde{\mathbf{R}}-R_{f} \iota\right)
$$

- Here, ϕ is vector of $\phi_{i}, \widetilde{\mathbf{R}}$ is vector of $\widetilde{\mathbf{R}}_{i}$ and ι is vector of 1 's.
- Utility is

$$
-\mathrm{e}^{-\alpha \tilde{w}_{1}}=\mathrm{e}^{-\alpha w_{0} R_{f}} \times\left(-\mathrm{e}^{-\alpha \phi^{\prime}\left(\tilde{\mathbf{R}}-R_{f} t\right)}\right)
$$

- Optimal dollar investments are independent of initial wealth (absence of wealth effects).
- Optimal shares are also independent of initial wealth.

LRT Utility

- Optimal dollar investments are affine in initial wealth: $\phi_{i}^{*}=a_{i}+b_{i} w_{0}$.
- Optimal shares are also affine in initial wealth (divide a_{i} and b_{i} by p_{i}).
- We say "wealth expansion paths are linear."
- Slope coefficient depends on cautiousness parameter. (Recall LRT means $\tau=A+B w$ and B is called the cautiousness parameter.)
- CARA investors have horizontal (zero slope) expansion paths.
- CRRA investors with same relative risk aversion have parallel expansion paths (same b_{i}).

Euler Equation

Time-Additive Utility and the Euler Equation

- Date-0 and date-1 consumption. Utility function $v\left(c_{0}, c_{1}\right)$. Assume time-additive utility

$$
v\left(c_{0}, c_{1}\right)=u\left(c_{0}\right)+\delta u\left(c_{1}\right)
$$

- Consumption/investment problem: choose $c_{0}, \phi_{1}, \ldots, \phi_{n}$ to

$$
\max u\left(c_{0}\right)+\mathrm{E}\left[\delta u\left(\sum_{i=1}^{n} \phi_{i} \widetilde{R}_{i}\right)\right] \quad \text { subject to } \quad c_{0}+\sum_{i=1}^{n} \phi_{i}=w .
$$

- FOC: $u^{\prime}\left(c_{0}\right)=\lambda$ and

$$
(\forall i) \quad \mathrm{E}\left[\delta u^{\prime}\left(\sum_{i=1}^{n} \phi_{i} \widetilde{R}_{i}\right) \widetilde{R}_{i}\right]=\lambda
$$

- So

$$
(\forall i) \quad \mathrm{E}\left[\frac{\delta u^{\prime}\left(\sum_{i=1}^{n} \phi_{i} \widetilde{R}_{i}\right)}{u^{\prime}\left(c_{0}\right)} \widetilde{R}_{i}\right]=1
$$

Exercise 2.6

With time-additive CRRA utility, the elasticity of intertemporal substitution is the reciprocal of relative risk aversion.

Definition of EIS: for a utility function $v\left(c_{0}, c_{1}\right)$.

$$
\begin{gathered}
\mathrm{MRS}=\frac{\partial v / \partial c_{0}}{\partial v / \partial c_{1}} \\
\mathrm{EIS}=\frac{\mathrm{d} \log \left(c_{1} / c_{0}\right)}{\mathrm{d} \log M R S}
\end{gathered}
$$

Set $x=c_{1} / c_{0}$. Assume time-additive CRRA utility:

$$
v\left(c_{0}, c_{1}\right)=\frac{1}{1-\rho} c_{0}^{1-\rho}+\frac{\delta}{1-\rho} c_{1}^{1-\rho}
$$

Then MRS $=-\log \delta+\rho \log x$. So, $\mathrm{d} \log \mathrm{MRS} / \mathrm{d} \log x=\rho$. This implies

$$
\mathrm{EIS}=\frac{1}{\rho}
$$

