Chapter 2: Portfolio Choice

Kerry Back BUSI 521/ECON 505 Spring 2024 Rice University

Simplest Problem

- Single risky asset, price p per share at date 0, price \tilde{x} per share at date 1.
- Risk-free asset with interest rate r_f.
- Investor has w₀ to invest. Allocates between risk-free and risky assets.
- Let θ = number of shares of risky asset. Then $w_0 p\theta$ is invested risk-free (this could be negative, meaning borrowing).
- θ is chosen to maximize

$$\mathsf{E}\big[u\big(\theta \tilde{x} + (w_0 - p\theta)(1 + r_f)\big)\big]$$

FOC is

$$\mathsf{E}\big[u'\big(\theta^*\tilde{x}+(w_0-p\theta^*)(1+r_f)\big)\big\{\tilde{x}-p(1+r_f)\big\}\big]=0$$

• Date-1 wealth is

$$\tilde{w}^* := \theta^* \tilde{x} + (w_0 - p\theta^*)(1 + r_f)$$

- Divide the FOC by p. Set R = x/p. This is the (gross) return on the risky asset, meaning 1 + rate of return.
- Set $R_f = 1 + r_f$. This is the (gross) risk-free return.
- The FOC is

 $\mathsf{E}[u'(\tilde{w}^*)\{\widetilde{\mathbf{R}}-R_f\}]=0$

• Date-1 wealth is

$$\tilde{w}^* := \theta^* \tilde{x} + (w_0 - p\theta^*)(1 + r_f)$$

- Divide the FOC by p. Set R = x/p. This is the (gross) return on the risky asset, meaning 1 + rate of return.
- Set $R_f = 1 + r_f$. This is the (gross) risk-free return.
- The FOC is

$$\mathsf{E}[u'(\tilde{w}^*)\{\widetilde{\mathbf{R}}-R_f\}]=0$$

• In words, marginal utility at the optimum is orthogonal to the excess return.

• Set
$$\tilde{m} = u'(\tilde{w}^*)$$
. The FOC is $E[\tilde{m}(\tilde{\mathbf{R}} - R_f)] = 0$.

• By the definition of covariance,

$$\mathsf{E}[\tilde{m}(\widetilde{\mathbf{R}}-R_f)]=\mathsf{E}[\tilde{m}]\mathsf{E}[\widetilde{\mathbf{R}}-R_f]+\mathsf{cov}(\tilde{m},\widetilde{\mathbf{R}}-R_f)$$

• So, the risk premium is

$$\mathsf{E}[\widetilde{\mathsf{R}} - R_f] = -\frac{1}{\mathsf{E}[\widetilde{m}]}\operatorname{cov}(\widetilde{m}, \widetilde{\mathsf{R}})$$

• What sign should the covariance with marginal utility have?

Notation

- $\bullet\,$ Single consumption good at each of two dates 0 and 1
- Date-0 wealth w_0 (in units of consumption good)
- Assets
 - Assets *i* = 1, . . . , *n*
 - Date-0 prices p_i (in units of consumption good)
 - Date-1 payoffs \tilde{x}_i (in units of consumption good)
- Returns
 - Returns $\widetilde{R}_i = \widetilde{x}_i / p_i$ (assuming $p_i > 0$)
 - Rates of return $(\tilde{x} p_i)/p_i = \widetilde{R}_i 1$
 - If there is a risk-free asset (\tilde{x} constant) then return is R_f
- Portfolios
 - θ_i = number of shares held in portfolio
 - $\phi_i = \theta_i p_i$ = units of consumption good invested
 - $\pi_i = \theta_i p_i / w_0$ = fraction of wealth invested

Portfolio Choice Problem

• Choose
$$\theta_1, \ldots, \theta_n$$
 to

$$\max \mathsf{E}\left[u\left(\sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}\right)\right] \quad \text{subject to} \quad \sum_{i=1}^{n} p_{i} \theta_{i} = w_{0} \,.$$

• Choose ϕ_1, \ldots, ϕ_n to

$$\max \mathsf{E}\left[u\left(\sum_{i=1}^{n} \phi_{i} \widetilde{R}_{i}\right)\right] \quad \text{subject to} \quad \sum_{i=1}^{n} \phi_{i} = w_{0}.$$

• Choose
$$\pi_1, \ldots, \pi_n$$
 to

$$\max \mathsf{E}\left[u\left(w_0\sum_{i=1}^n \pi_i \widetilde{R}_i\right)\right] \quad \text{subject to} \quad \sum_{i=1}^n \pi_i = 1.$$

Comments

- Short sales are allowed $(\theta_i < 0)$
- There are no margin requirements.
 - In the U.S. stock market, an investor with \$100 cash can only buy \$200 of stock (borrowing \$100).
 - In our formulation, there are no limits on borrowing, except that $\sum \theta_i \tilde{x}_i$ must be in the domain of $u(\cdot)$ —for example, positive if $u = \log$.
 - In real markets, collateral (margin) also has to be posted against short sales, but we do not require that in our formulation.
- Here, we take date-0 consumption and investment as given and optimize over the portfolio. We can also optimize over date-0 consumption and investment.
- We can sometimes allow for other non-portfolio income \tilde{y} at date-1 (for example, labor income).

First-Order Condition

• Lagrangean:

$$\mathsf{E}\left[u\left(\sum_{i=1}^{n}\theta_{i}\tilde{x}_{i}\right)\right] - \lambda\left(\sum_{i=1}^{n}p_{i}\theta_{i} - w_{0}\right)$$

 Assume interior optimum and assume can interchange differentiation and expectation to obtain

$$(\forall i) \quad \mathsf{E}\left[u'\left(\sum_{i=1}^{n}\theta_{i}\tilde{x}_{i}\right)\tilde{x}_{i}\right] = \lambda p_{i}$$

• If $p_i > 0$, $\mathsf{E}\left[u'\left(\sum_{i=1}^n \theta_i \tilde{x}_i\right) \widetilde{R}_i\right] = \lambda$

• If
$$p_i > 0$$
 and $p_j > 0$,

$$\mathsf{E}\left[u'\left(\sum_{i=1}^{n}\theta_{i}\tilde{x}_{i}\right)(\widetilde{R}_{i}-\widetilde{R}_{j})\right]=0$$

- In words: marginal utility at the optimal wealth is orthogonal to excess returns.
 - A return is the payoff of a unit-cost portfolio.
 - An excess return is the payoff of a zero-cost portfolio (for example, a difference of returns).
- Why? Investing a little less in asset *j* and a little more in asset *i* (or the reverse) cannot increase expected utility at the optimum.

Some Results for One Risky Asset

- Let $\phi =$ amount invested in risky asset, so $w_0 \phi$ is invested in risk-free asset. Let $\mu = \mathsf{E}[\widetilde{R}]$ and $\sigma^2 = \mathsf{var}(\widetilde{R})$.
- Date–1 wealth is

$$\tilde{w} = (w_0 - \phi)R_f + \phi \widetilde{R} = w_0R_f + \phi(\widetilde{R} - R_f)$$

• We will show: $\mu > R_f \Rightarrow \phi^* > 0$ (by symmetry, $\mu < R_f \Rightarrow \phi^* < 0$).

Proof

We want to compare $E[u(w_0R_f + \phi(\widetilde{R} - R_f)]$ to $u(w_0R_f)$. Define $\overline{w} = w_0R_f + \phi(\mu - R_f)$ and $\tilde{\varepsilon} = \phi(\widetilde{R} - \mu)$, so $w_0R_f + \phi(\widetilde{R} - R_f) = \overline{w} + \tilde{\varepsilon}$.

Define π by

$$u(\overline{w} - \pi) = \mathsf{E}[u(\overline{w} + \widetilde{\varepsilon})].$$

The variance of $\tilde{\varepsilon}$ is $\phi^2\sigma^2,$ so by second-order risk aversion,

$$\pi pprox rac{1}{2} lpha (\overline{w}) \phi^2 \sigma^2 < (\mu - R_f) \phi$$

when $\phi > 0$ and small, so

$$u(\overline{w} - \pi) > u(\overline{w} - (\mu - R_f)\phi) = u(w_0R_f)$$

BUSI 521/ECON 505, Spring 2024

DARA Implies Risky Asset is a Normal Good

- Normal good: demand rises when income (wealth) rises. Inferior: demand falls when income (wealth) rises.
- A single risky asset with μ > R_f is a normal good if the investor has decreasing absolute risk aversion.
- Proof: The FOC is

$$\mathsf{E}[u'(\tilde{w})(\tilde{R}-R_f)]=0$$

Differentiate it:

$$0 = \frac{\mathrm{d}}{\mathrm{d}w_0} \mathsf{E}[u'(w_0R_f + \phi(\widetilde{R} - R_f))(\widetilde{R} - R_f)]$$

= $\mathsf{E}[u''(\widetilde{w})\{R_f + \phi'(w_0)(\widetilde{R} - R_f)\}(\widetilde{R} - R_f)]$

Rearrange as

$$\phi'(w_0) = -\frac{R_f \mathsf{E}[u''(\tilde{w})(\tilde{R} - R_f)]}{\mathsf{E}[u''(\tilde{w})(\tilde{R} - R_f)^2]}$$

 ${\rm Can \ show:} \ {\rm DARA} \ \Rightarrow \ \phi' > 0.$

BUSI 521/ECON 505, Spring 2024

CARA-Normal with Single Risky Asset

Assume CARA utility $E[-e^{-\alpha \tilde{w}}]$. Assume $\tilde{R} \sim \text{normal } (\mu, \sigma)$. Then \tilde{w} is normally distributed.

Recall: If \tilde{x} is normally distributed with mean μ_x and std dev σ_x , then

$$\mathsf{E}[\mathrm{e}^{\tilde{x}}] = \mathrm{e}^{\mu_x + \sigma_x^2/2}$$

Given an investment ϕ in the risky asset, $-\alpha \tilde{w}$ is normal with mean $-\alpha w_0 R_f - \alpha \phi(\mu - R_f)$ and std dev $\alpha \phi \sigma$. Hence,

$$\mathsf{E}[-\mathrm{e}^{-\alpha\tilde{w}}] = -\mathrm{e}^{-\alpha[w_0R_f + \phi(\mu - R_f) - \alpha\phi^2\sigma^2/2]}$$

Thus,

$$w_0 R_f + \phi(\mu - R_f) - \alpha \phi^2 \sigma^2/2$$

is the certainty equivalent (mean minus one-half risk aversion times variance).

Optimal portfolio maximizes the certainty equivalent. Therefore, the optimum is

$$\phi^* = \frac{\mu - R_f}{\alpha \sigma^2}$$

The optimal fraction of wealth to invest is

$$\pi^* = \frac{\mu - R_f}{(\alpha w_0)\sigma^2}$$

Usually assume αw_0 is between 1 and 10.

Multiple Risky Assets

Portfolio Mean and Variance

- $\widetilde{\mathbf{R}} = n$ -vector of risky asset returns
- $\mu = n$ -vector of expected returns
- $\phi = n$ -vector of investments in consumption good units
- $\pi = (1/w_0)\phi$
- $\iota = n$ -vector of 1's
- $\Sigma = n \times n$ covariance matrix, $\Sigma_{ij} = \text{cov}(\widetilde{R}_i, \widetilde{R}_j)$

$$\Sigma = \mathsf{E}[(\widetilde{R} - \mu)(\widetilde{R} - \mu)']$$

- date-1 wealth $\tilde{w} = w_0 R_f + \phi'(\widetilde{\mathbf{R}} R_f \iota)$
- expected wealth $\overline{w} = w_0 R_f + \phi'(\mu R_f \iota)$
- variance of wealth $= \phi' \Sigma \phi$. Proof:

$$\mathsf{E}[(\widetilde{w} - \overline{w})^2] = \mathsf{E}[\{\phi'(\widetilde{\mathsf{R}} - \mu)\}^2] = \mathsf{E}[\phi'(\widetilde{R} - \mu)(\widetilde{R} - \mu)'\phi] = \phi'\Sigma\phi$$

Diversification

• Portfolio variance is

$$\pi'\Sigma\pi = \sum_{i=1}^{n} \pi_i^2 \operatorname{var}(\widetilde{R}_i) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \pi_i \pi_j \operatorname{cov}(\widetilde{R}_i, \widetilde{R}_j)$$

- We can generally make ∑ⁿ_{i=1} π²_i var(*R*_i) small by diversifying, if there are many assets.
- Suppose for example that the risky assets are uncorrelated and have the same variance σ^2 ($\Sigma = \sigma^2 I$). Then

$$\pi'\Sigma\pi = \sigma^2\sum_{i=1}^n \pi_i^2$$

Among portfolios fully invested in risky assets (π_i sum to 1), this variance is minimized at $\pi_i = 1/n$ and

$$\pi' \Sigma \pi = \sigma^2 \sum_{i=1}^n \left(\frac{1}{n}\right)^2 = \frac{\sigma^2}{n} \to 0 \quad \text{as } n \to \infty$$

BUSI 521/ECON 505, Spring 2024

CARA-Normal with Multiple Risky Assets

• Certainty equivalent is mean minus one-half risk aversion times variance:

$$w_0 R_f + \phi'(\mu - R_f \iota) - \frac{1}{2} \alpha \phi' \Sigma \phi$$

FOC is

$$\mu - R_f \iota - \alpha \Sigma \phi = \mathbf{0} \,.$$

Optimum is

$$\phi^* = \frac{1}{\alpha} \Sigma^{-1} (\mu - R_f \iota)$$

Note no wealth effects.

• Similar form to single risky asset case. Optimum investment in each asset depends on its covariances with other assets unless Σ is diagonal.

Wealth Expansion Paths

• With a risk-free asset, date-1 wealth is

$$\sum_{i} \phi \widetilde{\mathbf{R}}_{i} + \left(w_{0} - \sum_{i} \phi_{i} \right) R_{f}$$

• Divide by
$$w_0$$
 and write $\pi_i = \phi_i / w_0$.

• Date-1 wealth is

$$w_0\left[\sum_i \pi \widetilde{\mathsf{R}}_i + \left(1 - \sum_i \pi_i\right) R_f\right] := w_0 \widetilde{\mathsf{R}}_p$$

• In words, initial wealth times the (gross) portfolio return.

• Utility is

$$\log(w_0 \widetilde{\mathbf{R}}_p) = \log w_0 + \log \widetilde{\mathbf{R}}_p = \log w_0 + \log \left(\sum_i \pi \widetilde{\mathbf{R}}_i + \left(1 - \sum_i \pi_i \right) R_f \right)$$

- The optimal portfolio maximizes expected log of portfolio return and is independent of initial wealth.
- Optimal dollar investments are proportional to initial wealth: $\phi_i^* = w_0 \pi_i^*$.
- Optimal shares are also proportional to initial wealth: $\theta_i^* = \phi_i^*/p_i = w_0 \pi_i^*/p_i.$

• Utility is

$$\frac{1}{1-\rho}(w_0\widetilde{\mathsf{R}}_{\rho})^{1-\rho} = w_0^{1-\rho} \times \frac{1}{1-\rho}\widetilde{\mathsf{R}}_{\rho}^{1-\rho}$$

- So w₀^{1-ρ} is a positive constant that multiplies the expected utility of the portfolio return.
- Optimal portfolio π^* maximizes expected utility of portfolio return and is independent of initial wealth.
- Optimal dollar investments are proportional to initial wealth: $\phi_i^* = w_0 \pi_i^*$.
- Optimal shares are also proportional to initial wealth: $\theta_i^* = \phi_i^*/p_i = w_0 \pi_i^*/p_i.$

• Stick with \$ investments. Date-1 wealth is

$$\sum_{i} \phi \widetilde{\mathbf{R}}_{i} + \left(w_{0} - \sum_{i} \phi_{i} \right) R_{f} = w_{0} R_{f} + \phi' (\widetilde{\mathbf{R}} - R_{f} \iota)$$

- Here, ϕ is vector of ϕ_i , $\widetilde{\mathbf{R}}$ is vector of $\widetilde{\mathbf{R}}_i$ and ι is vector of 1's.
- Utility is

$$-\mathrm{e}^{-\alpha\tilde{w}_{1}}=\mathrm{e}^{-\alpha w_{0}R_{f}}\times\left(-\mathrm{e}^{-\alpha\phi'(\widetilde{\mathsf{R}}-R_{f}\iota)}\right)$$

- Optimal dollar investments are independent of initial wealth (absence of wealth effects).
- Optimal shares are also independent of initial wealth.

- Optimal dollar investments are affine in initial wealth: $\phi_i^* = a_i + b_i w_0.$
- Optimal shares are also affine in initial wealth (divide *a_i* and *b_i* by *p_i*).
- We say "wealth expansion paths are linear."
- Slope coefficient depends on cautiousness parameter. (Recall LRT means τ = A + Bw and B is called the cautiousness parameter.)
- CARA investors have horizontal (zero slope) expansion paths.
- CRRA investors with same relative risk aversion have parallel expansion paths (same *b_i*).

Euler Equation

Time-Additive Utility and the Euler Equation

 Date-0 and date-1 consumption. Utility function v(c₀, c₁). Assume time-additive utility

$$u(c_0,c_1)=u(c_0)+\delta u(c_1)$$

• Consumption/investment problem: choose $c_0, \phi_1, \ldots, \phi_n$ to

$$\max u(c_0) + \mathsf{E}\left[\delta u\left(\sum_{i=1}^n \phi_i \widetilde{R}_i\right)\right] \quad \text{subject to} \quad c_0 + \sum_{i=1}^n \phi_i = w \,.$$

• FOC: $u'(c_0) = \lambda$ and

$$(\forall i) \quad \mathsf{E}\left[\delta u'\left(\sum_{i=1}^{n}\phi_{i}\widetilde{R}_{i}\right)\widetilde{R}_{i}\right] = \lambda$$

So

$$(\forall i) \quad \mathsf{E}\left[\frac{\delta u'\left(\sum_{i=1}^{n}\phi_{i}\widetilde{R}_{i}\right)}{u'(c_{0})}\widetilde{R}_{i}\right] = 1$$

Exercise 2.6

With time-additive CRRA utility, the elasticity of intertemporal substitution is the reciprocal of relative risk aversion.

Definition of EIS: for a utility function $v(c_0, c_1)$.

$$MRS = \frac{\partial v / \partial c_0}{\partial v / \partial c_1}$$
$$EIS = \frac{d \log(c_1/c_0)}{d \log MRS}$$

Set $x = c_1/c_0$. Assume time-additive CRRA utility:

$$v(c_0, c_1) = rac{1}{1-
ho}c_0^{1-
ho} + rac{\delta}{1-
ho}c_1^{1-
ho}$$

Then MRS $= -\log \delta + \rho \log x$. So, $d \log MRS/d \log x = \rho$. This implies

$$\mathsf{EIS} = \frac{1}{\rho}$$